CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

Overview

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021)

This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm (CN) and SelfNorm (SN), two simple, effective, and complementary normalization techniques to improve generalization robustness under distribution shifts.

@article{tang2021cnsn,
  title={CrossNorm and SelfNorm for Generalization under Distribution Shifts},
  author={Zhiqiang Tang, Yunhe Gao, Yi Zhu, Zhi Zhang, Mu Li, Dimitris Metaxas},
  journal={arXiv preprint arXiv:2102.02811},
  year={2021}
}

Install dependencies

conda create --name cnsn python=3.7
conda activate cnsn
conda install numpy
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

Prepare datasets

  • Download CIFAR-10-C and CIFAR-100-C datasets with:

    mkdir -p ./data
    curl -O https://zenodo.org/record/2535967/files/CIFAR-10-C.tar
    curl -O https://zenodo.org/record/3555552/files/CIFAR-100-C.tar
    tar -xvf CIFAR-100-C.tar -C data/
    tar -xvf CIFAR-10-C.tar -C data/
    
  • Download ImageNet-C with:

    mkdir -p ./data/ImageNet-C
    curl -O https://zenodo.org/record/2235448/files/blur.tar
    curl -O https://zenodo.org/record/2235448/files/digital.tar
    curl -O https://zenodo.org/record/2235448/files/noise.tar
    curl -O https://zenodo.org/record/2235448/files/weather.tar
    tar -xvf blur.tar -C data/ImageNet-C
    tar -xvf digital.tar -C data/ImageNet-C
    tar -xvf noise.tar -C data/ImageNet-C
    tar -xvf weather.tar -C data/ImageNet-C
    

Usage

We have included sample scripts in cifar10-scripts, cifar100-scripts, and imagenet-scripts. For example, there are 5 scripts for CIFAR-100 and WideResNet:

  1. ./cifar100-scripts/wideresnet/run-cn.sh

  2. ./cifar100-scripts/wideresnet/run-sn.sh

  3. ./cifar100-scripts/wideresnet/run-cnsn.sh

  4. ./cifar100-scripts/wideresnet/run-cnsn-consist.sh (Use CNSN with JSD consistency regularization)

  5. ./cifar100-scripts/wideresnet/run-cnsn-augmix.sh (Use CNSN with AugMix)

Pretrained models

  • Pretrained ResNet-50 ImageNet classifiers are available:
  1. ResNet-50 + CN
  2. ResNet-50 + SN
  3. ResNet-50 + CNSN
  4. ResNet-50 + CNSN + IBN + AugMix.
  • Results of the above 4 ResNet-50 models on ImageNet:
+CN +SN +CNSN +CNSN+IBN+AugMix
Top-1 err 23.3 23.7 23.3 22.3
mCE 75.1 73.8 69.7 62.8
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022