FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

Overview

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection
arXiv preprint (arXiv:2111.10780).

This implement is modified from mmdetection. We also refer to the codes of ReDet, PIoU, and ProbIoU.

In the process of implementation, we find that only Python code processing will produce huge memory overhead on Nvidia devices. Therefore, we directly write the label assignment module proposed in this paper in the form of CUDA extension of Pytorch. The program could not work effectively when we migrate it to cuda 11 (only support cuda10). By applying CUDA expansion, the memory utilization is improved and a lot of unnecessary calculations are reduced. We also try to train FCOSR-M on 2080ti (4 images per device), which can basically fill memory of graphics card.

FCOSR TensorRT inference code is available at: https://github.com/lzh420202/TensorRT_Inference

We add a multiprocess version DOTA2COCO into DOTA_devkit package, you could switch USE_MULTI_PROCESS to control the function in prepare_dota.py

Install

Please refer to install.md for installation and dataset preparation.

Getting Started

Please see get_started.md for the basic usage.

Model Zoo

Speed vs Accuracy on DOTA 1.0 test set

benchmark

Details (Test device: nvidia RTX 2080ti)

Methods backbone FPS mAP(%)
ReDet ReR50 8.8 76.25
S2ANet Mobilenet v2 18.9 67.46
S2ANet R50 14.4 74.14
R3Det R50 9.2 71.9
Oriented-RCNN Mobilenet v2 21.2 72.72
Oriented-RCNN R50 13.8 75.87
Oriented-RCNN R101 11.3 76.28
RetinaNet-O Mobilenet v2 22.4 67.95
RetinaNet-O R50 16.5 72.7
RetinaNet-O R101 13.3 73.7
Faster-RCNN-O Mobilenet v2 23 67.41
Faster-RCNN-O R50 14.4 72.29
Faster-RCNN-O R101 11.4 72.65
FCOSR-S Mobilenet v2 23.7 74.05
FCOSR-M Rx50 14.6 77.15
FCOSR-L Rx101 7.9 77.39

The password of baiduPan is ABCD

FCOSR serise DOTA 1.0 result.FPS(2080ti) Detail

Model backbone MS Sched. Param. Input GFLOPs FPS mAP download
FCOSR-S Mobilenet v2 - 3x 7.32M 1024×1024 101.42 23.7 74.05 model/cfg
FCOSR-S Mobilenet v2 3x 7.32M 1024×1024 101.42 23.7 76.11 model/cfg
FCOSR-M ResNext50-32x4 - 3x 31.4M 1024×1024 210.01 14.6 77.15 model/cfg
FCOSR-M ResNext50-32x4 3x 31.4M 1024×1024 210.01 14.6 79.25 model/cfg
FCOSR-L ResNext101-64x4 - 3x 89.64M 1024×1024 445.75 7.9 77.39 model/cfg
FCOSR-L ResNext101-64x4 3x 89.64M 1024×1024 445.75 7.9 78.80 model/cfg

FCOSR serise DOTA 1.5 result. FPS(2080ti) Detail

Model backbone MS Sched. Param. Input GFLOPs FPS mAP download
FCOSR-S Mobilenet v2 - 3x 7.32M 1024×1024 101.42 23.7 66.37 model/cfg
FCOSR-S Mobilenet v2 3x 7.32M 1024×1024 101.42 23.7 73.14 model/cfg
FCOSR-M ResNext50-32x4 - 3x 31.4M 1024×1024 210.01 14.6 68.74 model/cfg
FCOSR-M ResNext50-32x4 3x 31.4M 1024×1024 210.01 14.6 73.79 model/cfg
FCOSR-L ResNext101-64x4 - 3x 89.64M 1024×1024 445.75 7.9 69.96 model/cfg
FCOSR-L ResNext101-64x4 3x 89.64M 1024×1024 445.75 7.9 75.41 model/cfg

FCOSR serise HRSC2016 result. FPS(2080ti)

Model backbone Rot. Sched. Param. Input GFLOPs FPS AP50(07) AP75(07) AP50(12) AP75(12) download
FCOSR-S Mobilenet v2 40k iters 7.29M 800×800 61.57 35.3 90.08 76.75 92.67 75.73 model/cfg
FCOSR-M ResNext50-32x4 40k iters 31.37M 800×800 127.87 26.9 90.15 78.58 94.84 81.38 model/cfg
FCOSR-L ResNext101-64x4 40k iters 89.61M 800×800 271.75 15.1 90.14 77.98 95.74 80.94 model/cfg

Lightweight FCOSR test result on Jetson Xavier NX (DOTA 1.0 single-scale). Detail

Model backbone Head channels Sched. Param Size Input GFLOPs FPS mAP onnx TensorRT
FCOSR-lite Mobilenet v2 256 3x 6.9M 51.63MB 1024×1024 101.25 7.64 74.30 onnx trt
FCOSR-tiny Mobilenet v2 128 3x 3.52M 23.2MB 1024×1024 35.89 10.68 73.93 onnx trt

Lightweight FCOSR test result on Jetson AGX Xavier (DOTA 1.0 single-scale).

A part of Dota1.0 dataset (whole image mode) Code

name size patch size gap patches det objects det time(s)
P0031.png 5343×3795 1024 200 35 1197 2.75
P0051.png 4672×5430 1024 200 42 309 2.38
P0112.png 6989×4516 1024 200 54 184 3.02
P0137.png 5276×4308 1024 200 35 66 1.95
P1004.png 7001×3907 1024 200 45 183 2.52
P1125.png 7582×4333 1024 200 54 28 2.95
P1129.png 4093×6529 1024 200 40 70 2.23
P1146.png 5231×4616 1024 200 42 64 2.29
P1157.png 7278×5286 1024 200 63 184 3.47
P1378.png 5445×4561 1024 200 42 83 2.32
P1379.png 4426×4182 1024 200 30 686 1.78
P1393.png 6072×6540 1024 200 64 893 3.63
P1400.png 6471×4479 1024 200 48 348 2.63
P1402.png 4112×4793 1024 200 30 293 1.68
P1406.png 6531×4182 1024 200 40 19 2.19
P1415.png 4894x4898 1024 200 36 190 1.99
P1436.png 5136×5156 1024 200 42 39 2.31
P1448.png 7242×5678 1024 200 63 51 3.41
P1457.png 5193×4658 1024 200 42 382 2.33
P1461.png 6661×6308 1024 200 64 27 3.45
P1494.png 4782×6677 1024 200 48 70 2.61
P1500.png 4769×4386 1024 200 36 92 1.96
P1772.png 5963×5553 1024 200 49 28 2.70
P1774.png 5352×4281 1024 200 35 291 1.95
P1796.png 5870×5822 1024 200 49 308 2.74
P1870.png 5942×6059 1024 200 56 135 3.04
P2043.png 4165×3438 1024 200 20 1479 1.49
P2329.png 7950×4334 1024 200 60 83 3.26
P2641.png 7574×5625 1024 200 63 269 3.41
P2642.png 7039×5551 1024 200 63 451 3.50
P2643.png 7568×5619 1024 200 63 249 3.40
P2645.png 4605×3442 1024 200 24 357 1.42
P2762.png 8074×4359 1024 200 60 127 3.23
P2795.png 4495×3981 1024 200 30 65 1.64
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022