PyTorch reimplementation of Diffusion Models

Overview

PyTorch pretrained Diffusion Models

A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author's TensorFlow implementation.

Quickstart

Running

pip install -e git+https://github.com/pesser/pytorch_diffusion.git#egg=pytorch_diffusion
pytorch_diffusion_demo

will start a Streamlit demo. It is recommended to run the demo with a GPU available.

demo

Usage

Diffusion models with pretrained weights for cifar10, lsun-bedroom, lsun_cat or lsun_church can be loaded as follows:

from pytorch_diffusion import Diffusion

diffusion = Diffusion.from_pretrained("lsun_church")
samples = diffusion.denoise(4)
diffusion.save(samples, "lsun_church_sample_{:02}.png")

Prefix the name with ema_ to load the averaged weights that produce better results. The U-Net model used for denoising is available via diffusion.model and can also be instantiated on its own:

from pytorch_diffusion import Model

model = Model(resolution=32,
              in_channels=3,
              out_ch=3,
              ch=128,
              ch_mult=(1,2,2,2),
              num_res_blocks=2,
              attn_resolutions=(16,),
              dropout=0.1)

This configuration example corresponds to the model used on CIFAR-10.

Producing samples

If you installed directly from github, you can find the cloned repository in <venv path>/src/pytorch_diffusion for virtual environments, and <cwd>/src/pytorch_diffusion for global installs. There, you can run

python pytorch_diffusion/diffusion.py <name> <bs> <nb>

where <name> is one of cifar10, lsun-bedroom, lsun_cat, lsun_church, or one of these names prefixed with ema_, <bs> is the batch size and <nb> the number of batches. This will produce samples from the PyTorch models and save them to results/<name>/.

Results

Evaluating 50k samples with torch-fidelity gives

Dataset EMA Framework Model FID
CIFAR10 Train no PyTorch cifar10 12.13775
TensorFlow tf_cifar10 12.30003
yes PyTorch ema_cifar10 3.21213
TensorFlow tf_ema_cifar10 3.245872
CIFAR10 Validation no PyTorch cifar10 14.30163
TensorFlow tf_cifar10 14.44705
yes PyTorch ema_cifar10 5.274105
TensorFlow tf_ema_cifar10 5.325035

To reproduce, generate 50k samples from the converted PyTorch models provided in this repo with

`python pytorch_diffusion/diffusion.py <Model> 500 100`

and with

python -c "import convert as m; m.sample_tf(500, 100, which=['cifar10', 'ema_cifar10'])"

for the original TensorFlow models.

Running conversions

The converted pytorch checkpoints are provided for download. If you want to convert them on your own, you can follow the steps described here.

Setup

This section assumes your working directory is the root of this repository. Download the pretrained TensorFlow checkpoints. It should follow the original structure,

diffusion_models_release/
  diffusion_cifar10_model/
    model.ckpt-790000.data-00000-of-00001
    model.ckpt-790000.index
    model.ckpt-790000.meta
  diffusion_lsun_bedroom_model/
    ...
  ...

Set the environment variable TFROOT to the directory where you want to store the author's repository, e.g.

export TFROOT=".."

Clone the diffusion repository,

git clone https://github.com/hojonathanho/diffusion.git ${TFROOT}/diffusion

and install their required dependencies (pip install ${TFROOT}/requirements.txt). Then add the following to your PYTHONPATH:

export PYTHONPATH=".:./scripts:${TFROOT}/diffusion:${TFROOT}/diffusion/scripts:${PYTHONPATH}"

Testing operations

To test the pytorch implementations of the required operations against their TensorFlow counterparts under random initialization and random inputs, run

python -c "import convert as m; m.test_ops()"

Converting checkpoints

To load the pretrained TensorFlow models, copy the weights into the pytorch models, check for equality on random inputs and finally save the corresponding pytorch checkpoints, run

python -c "import convert as m; m.transplant_cifar10()"
python -c "import convert as m; m.transplant_cifar10(ema=True)"
python -c "import convert as m; m.transplant_lsun_bedroom()"
python -c "import convert as m; m.transplant_lsun_bedroom(ema=True)"
python -c "import convert as m; m.transplant_lsun_cat()"
python -c "import convert as m; m.transplant_lsun_cat(ema=True)"
python -c "import convert as m; m.transplant_lsun_church()"
python -c "import convert as m; m.transplant_lsun_church(ema=True)"

Pytorch checkpoints will be saved in

diffusion_models_converted/
  diffusion_cifar10_model/
    model-790000.ckpt
  ema_diffusion_cifar10_model/
    model-790000.ckpt
  diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  ema_diffusion_lsun_bedroom_model/
    model-2388000.ckpt
  diffusion_lsun_cat_model/
    model-1761000.ckpt
  ema_diffusion_lsun_cat_model/
    model-1761000.ckpt
  diffusion_lsun_church_model/
    model-4432000.ckpt
  ema_diffusion_lsun_church_model/
    model-4432000.ckpt

Sample TensorFlow models

To produce N samples from each of the pretrained TensorFlow models, run

python -c "import convert as m; m.sample_tf(N)"

Pass a list of model names as keyword argument which to specify which models to sample from. Samples will be saved in results/.

Owner
Patrick Esser
Patrick Esser
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023