Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

Overview

NÜWA - Pytorch (wip)

Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be populated in the case that Microsoft does not open source the code by end of December. It may also contain an extension into video and audio, using a dual decoder approach.

DeepReader

Citations

@misc{wu2021nuwa,
    title   = {N\"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion}, 
    author  = {Chenfei Wu and Jian Liang and Lei Ji and Fan Yang and Yuejian Fang and Daxin Jiang and Nan Duan},
    year    = {2021},
    eprint  = {2111.12417},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Question about generated videos?

    Question about generated videos?

    There are a lot of negative numbers and very small decimals (like 5e-1). But the loss degrades normally when training. Is that a normal situation? How can I make the result visible?

    opened by Fitzwong 0
  • Why the video does not pass through the encoder?

    Why the video does not pass through the encoder?

    Hi! lucidrains. Thanks for providing a great repo which is convenient to understand the NUWA paper.
    I have a question as follows: In the NUWA paper, we can see that the inputs of the Encoder are caption tokens (caption condition) and the video tokens (3DNA condition). So, in my eye, the video tokens sequence should fully self-attend in the Encoder, right? And then, the outputs condition the Decoder. The Decoder provided by you is as following. 截屏2022-05-12 上午11 07 12. It has causal self-attention and text-condition as we expected. But from the definition in paper, the condition contains the text-condition and 3DNA condition, and these two condition the Decoder. Is my opinion right? I am just curious about the condition in the NUWA paper. The Encoder in your repo is only the Text-Encoder, but the video does not pass through the encoder to condition the Encoder.

    Looking forward to your reply! Thanks!

    opened by Wang-Xiaodong1899 0
  • Questions about function forward() in NUWA please.

    Questions about function forward() in NUWA please.

    I'm confused me that, in function forward() of class NUWA, the ground-truth video is fed to transformer and calculate the output video, which is different from function generate().

    frame_embeddings = self.video_transformer(
                frame_embeddings,  # calculated from ground-truth video
                context = text_embeds,
                context_mask = text_mask
            )
    

    So when training NUWA, the loss comes from logits. But the logits are not only from text, but ground-truth video (only one transformer layer, different from the auto-regressive model in generate function). Is that some kind of cheating when training? Or should I generate logits in the same way as in generate(), and then calculate loss to train?

    opened by Fitzwong 1
  • Type of dataset for training VQ-GAN

    Type of dataset for training VQ-GAN

    Hi,

    First, thanks a lot for the amazing work! I have one question regarding the training of the VQ-GAN, do you recommend training it on a dataset similar to the dataset the nuwa model will be trained? What I mean is, if I want to train nuwa to generate sport videos based on text, do I need to also train the VQ-GAN on a sport dataset?

    Thanks a lot

    opened by antonibigata 0
  • Pseudocode for 3DNA?

    Pseudocode for 3DNA?

    me no comprendai le complex einops 😢

    Can someone give the 3DNA pseudocode to illustrate what's going on 🤗

    (Also how did lucidrains bang out thousands of lines of code in a few weeks - is he confirmed to be human? 🤔)

    opened by neel04 4
Releases(0.7.7a)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022