Sequence lineage information extracted from RKI sequence data repo

Overview

Pango lineage information for German SARS-CoV-2 sequences

This repository contains a join of the metadata and pango lineage tables of all German SARS-CoV-2 sequences published by the Robert-Koch-Institut on Github.

The data here is updated every hour, automatically through a Github action, so whenever new data appears in the RKI repo, you will see it here within at most an hour.

The resulting dataset can be downloaded here, beware it's currently around 50MB in size: https://raw.githubusercontent.com/corneliusroemer/desh-data/main/data/meta_lineages.csv

Omicron share plot

Omicron Logit Plot

Omicron Logit Plot

Description of data

Column description:

  • IMS_ID: Unique identifier of the sequence
  • DATE_DRAW: Date the sample was taken from the patient
  • SEQ_REASON: Reason for sequencing, one of:
    • X: Unknown
    • N: Random sampling
    • Y: Targeted sequencing (exact reason unknown)
    • A[<reason>]: Targeted sequencing because variant PCR indicated VOC
  • PROCESSING_DATE: Date the sample was processed by the RKI and added to Github repo
  • SENDING_LAB_PC: Postcode (PLZ) of lab that did the initial PCR
  • SEQUENCING_LAB_PC: Postcode (PLZ) of lab that did the sequencing
  • lineage: Pango lineage as reported by pangolin
  • scorpio_call: Alternative, rough, variant as determined by scorpio (part of pangolin), this is less precise but a bit more robust than pangolin.

Excerpt

Here are the first 10 lines of the dataset.

IMS_ID,DATE_DRAW,SEQ_REASON,PROCESSING_DATE,SENDING_LAB_PC,SEQUENCING_LAB_PC,lineage,scorpio_call
IMS-10294-CVDP-00001,2021-01-14,X,2021-01-25,40225,40225,B.1.1.297,
IMS-10025-CVDP-00001,2021-01-17,N,2021-01-26,10409,10409,B.1.389,
IMS-10025-CVDP-00002,2021-01-17,N,2021-01-26,10409,10409,B.1.258,
IMS-10025-CVDP-00003,2021-01-17,N,2021-01-26,10409,10409,B.1.177.86,
IMS-10025-CVDP-00004,2021-01-17,N,2021-01-26,10409,10409,B.1.389,
IMS-10025-CVDP-00005,2021-01-18,N,2021-01-26,10409,10409,B.1.160,
IMS-10025-CVDP-00006,2021-01-17,N,2021-01-26,10409,10409,B.1.1.297,
IMS-10025-CVDP-00007,2021-01-18,N,2021-01-26,10409,10409,B.1.177.81,
IMS-10025-CVDP-00008,2021-01-18,N,2021-01-26,10409,10409,B.1.177,
IMS-10025-CVDP-00009,2021-01-18,N,2021-01-26,10409,10409,B.1.1.7,Alpha (B.1.1.7-like)
IMS-10025-CVDP-00010,2021-01-17,N,2021-01-26,10409,10409,B.1.1.7,Alpha (B.1.1.7-like)
IMS-10025-CVDP-00011,2021-01-17,N,2021-01-26,10409,10409,B.1.389,

Suggested import into pandas

You can import the data into pandas as follows:

#%%
import pandas as pd

#%%
df = pd.read_csv(
    'https://raw.githubusercontent.com/corneliusroemer/desh-data/main/data/meta_lineages.csv',
    index_col=0,
    parse_dates=[1,3],
    infer_datetime_format=True,
    cache_dates=True,
    dtype = {'SEQ_REASON': 'category',
             'SENDING_LAB_PC': 'category',
             'SEQUENCING_LAB_PC': 'category',
             'lineage': 'category',
             'scorpio_call': 'category'
             }
)
#%%
df.rename(columns={
    'DATE_DRAW': 'date',
    'PROCESSING_DATE': 'processing_date',
    'SEQ_REASON': 'reason',
    'SENDING_LAB_PC': 'sending_pc',
    'SEQUENCING_LAB_PC': 'sequencing_pc',
    'lineage': 'lineage',
    'scorpio_call': 'scorpio'
    },
    inplace=True
)
df

License

The underlying files that I use as input are licensed by RKI under CC-BY 4.0, see more details here: https://github.com/robert-koch-institut/SARS-CoV-2-Sequenzdaten_aus_Deutschland#lizenz.

The software here is licensed under the "Unlicense". You can do with it whatever you want.

For the data, just cite the original source, no need to cite this repo since it's just a trivial join.

Owner
Cornelius Roemer
Cornelius Roemer
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022