Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Overview

Oriented RepPoints for Aerial Object Detection

图片

The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”.

Introduction

Based on the Oriented Reppoints detector with Swin Transformer backbone, the 3rd Place is achieved on the Task 1 and the 2nd Place is achieved on the Task 2 of 2021 challenge of Learning to Understand Aerial Images (LUAI) held on ICCV’2021. The detailed information is introduced in this paper of "LUAI Challenge 2021 on Learning to Understand Aerial Images, ICCVW2021".

New Feature

  • BackBone: add Swin-Transformer, ReResNet
  • DataAug: add Mosaic4or9, Mixup, HSV, RandomPerspective, RandomScaleCrop DataAug out

Installation

Please refer to install.md for installation and dataset preparation.

Getting Started

This repo is based on mmdetection. Please see GetStart.md for the basic usage.

Results and Models

The results on DOTA test-dev set are shown in the table below(password:aabb/swin/ABCD). More detailed results please see the paper.

Model Backbone MS DataAug DOTAv1 mAP DOTAv2 mAP Download
OrientedReppoints R-50 - - 75.68 - baidu(aabb)
OrientedReppoints R-101 - 76.21 - baidu(aabb)
OrientedReppoints R-101 78.12 - baidu(aabb)
OrientedReppoints SwinT-tiny - - - -

ImageNet-1K and ImageNet-22K Pretrained Models

name pretrain resolution [email protected] [email protected] #params FLOPs FPS 22K model 1K model Need to turn read version
Swin-T ImageNet-1K 224x224 81.2 95.5 28M 4.5G 755 - github/baidu(swin)/config
Swin-S ImageNet-1K 224x224 83.2 96.2 50M 8.7G 437 - github/baidu(swin)/config
Swin-B ImageNet-1K 224x224 83.5 96.5 88M 15.4G 278 - github/baidu(swin)/config
Swin-B ImageNet-1K 384x384 84.5 97.0 88M 47.1G 85 - github/baidu(swin)/test-config
Swin-B ImageNet-22K 224x224 85.2 97.5 88M 15.4G 278 github/baidu(swin) github/baidu(swin)/test-config
Swin-B ImageNet-22K 384x384 86.4 98.0 88M 47.1G 85 github/baidu(swin) github/baidu(swin)/test-config
Swin-L ImageNet-22K 224x224 86.3 97.9 197M 34.5G 141 github/baidu(swin) github/baidu(swin)/test-config
Swin-L ImageNet-22K 384x384 87.3 98.2 197M 103.9G 42 github/baidu(swin) github/baidu(swin)/test-config
ReResNet50 ImageNet-1K 224x224 71.20 90.28 - - - - google/baidu(ABCD)/log -

The mAOE results on DOTAv1 val set are shown in the table below(password:aabb).

Model Backbone mAOE Download
OrientedReppoints R-50 5.93° baidu(aabb)

Note:

  • Wtihout the ground-truth of test subset, the mAOE of orientation evaluation is calculated on the val subset(original train subset for training).
  • The orientation (angle) of an aerial object is define as below, the detail of mAOE, please see the paper. The code of mAOE is mAOE_evaluation.py. 微信截图_20210522135042

Visual results

The visual results of learning points and the oriented bounding boxes. The visualization code is show_learning_points_and_boxes.py.

  • Learning points

Learning Points

  • Oriented bounding box

Oriented Box

Citation

@article{Li2021oriented,
  title={Oriented RepPoints for Aerial Object Detection},
  author={Wentong Li and Jianke Zhu},
  journal={arXiv preprint arXiv:2105.11111},
  year={2021}
}

Acknowledgements

I have used utility functions from other wonderful open-source projects. Espeicially thank the authors of:

OrientedRepPoints

Swin-Transformer-Object-Detection

ReDet

Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023