An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Overview

causal-bald

| Abstract | Installation | Example | Citation | Reproducing Results DUE

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Evolution of CATE function with Causal BALD acquisition strategy

Abstract

Estimating personalized treatment effects from high-dimensional observational data is essential in situations where experimental designs are infeasible, unethical or expensive. Existing approaches rely on fitting deep models on outcomes observed for treated and control populations, but when measuring the outcome for an individual is costly (e.g. biopsy) a sample efficient strategy for acquiring outcomes is required. Deep Bayesian active learning provides a framework for efficient data acquisition by selecting points with high uncertainty. However, naive application of existing methods selects training data that is biased toward regions where the treatment effect cannot be identified because there is non-overlapping support between the treated and control populations. To maximize sample efficiency for learning personalized treatment effects, we introduce new acquisition functions grounded in information theory that bias data acquisition towards regions where overlap is satisfied, by combining insights from deep Bayesian active learning and causal inference. We demonstrate the performance of the proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and CMNIST and their extensions which aim to simulate common dataset biases and pathologies.

Installation

$ git clone [email protected]:[anon]/causal-bald.git
$ cd causal-bald
$ conda env create -f environment.yml
$ conda activate causal-bald

[Optional] For developer mode

$ pip install -e .

Example

Active learning loop

First run using random acquisition:

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function random \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Now run using $\mu\rho\textrm{-BALD}$ acquisition.

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function mu-rho \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Evaluation

Evaluate PEHE at each acquisition step

causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe
causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe

Plot results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m random

Plotting convergence of acquisitions. Comparing random and mu-rho for example code

Citation

If you find this code helpful for your work, please cite our paper Paper as

@article{jesson2021causal,
  title={Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data},
  author={Jesson, Andrew and Tigas, Panagiotis and van Amersfoort, Joost and Kirsch, Andreas and Shalit, Uri and Gal, Yarin},
  journal={Advances in Neural Information Processing Systems},
  volume={35},
  year={2021}
}

Reprodcuing Results Due

IHDP

$\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-tau_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Random

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-sundin_temp-1.0/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

Synthetic

Synthetic dataset

Synthetic: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/ihdp pehe

Synthetic: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-tau_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Random

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-random_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-sundin_temp-1.0/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/synthetic \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

CMNIST

CMNIST dataset

CMNIST: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/ihdp pehe

CMNIST: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-tau_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Random

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-random_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-sundin_temp-1.0/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/cmnist \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin
Owner
Andrew Jesson
PhD in Machine Learning at University of Oxford @OATML
Andrew Jesson
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022