An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Overview

causal-bald

| Abstract | Installation | Example | Citation | Reproducing Results DUE

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Evolution of CATE function with Causal BALD acquisition strategy

Abstract

Estimating personalized treatment effects from high-dimensional observational data is essential in situations where experimental designs are infeasible, unethical or expensive. Existing approaches rely on fitting deep models on outcomes observed for treated and control populations, but when measuring the outcome for an individual is costly (e.g. biopsy) a sample efficient strategy for acquiring outcomes is required. Deep Bayesian active learning provides a framework for efficient data acquisition by selecting points with high uncertainty. However, naive application of existing methods selects training data that is biased toward regions where the treatment effect cannot be identified because there is non-overlapping support between the treated and control populations. To maximize sample efficiency for learning personalized treatment effects, we introduce new acquisition functions grounded in information theory that bias data acquisition towards regions where overlap is satisfied, by combining insights from deep Bayesian active learning and causal inference. We demonstrate the performance of the proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and CMNIST and their extensions which aim to simulate common dataset biases and pathologies.

Installation

$ git clone [email protected]:[anon]/causal-bald.git
$ cd causal-bald
$ conda env create -f environment.yml
$ conda activate causal-bald

[Optional] For developer mode

$ pip install -e .

Example

Active learning loop

First run using random acquisition:

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function random \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Now run using $\mu\rho\textrm{-BALD}$ acquisition.

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function mu-rho \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Evaluation

Evaluate PEHE at each acquisition step

causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe
causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe

Plot results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m random

Plotting convergence of acquisitions. Comparing random and mu-rho for example code

Citation

If you find this code helpful for your work, please cite our paper Paper as

@article{jesson2021causal,
  title={Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data},
  author={Jesson, Andrew and Tigas, Panagiotis and van Amersfoort, Joost and Kirsch, Andreas and Shalit, Uri and Gal, Yarin},
  journal={Advances in Neural Information Processing Systems},
  volume={35},
  year={2021}
}

Reprodcuing Results Due

IHDP

$\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-tau_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Random

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-sundin_temp-1.0/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

Synthetic

Synthetic dataset

Synthetic: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/ihdp pehe

Synthetic: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-tau_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Random

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-random_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-sundin_temp-1.0/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/synthetic \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

CMNIST

CMNIST dataset

CMNIST: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/ihdp pehe

CMNIST: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-tau_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Random

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-random_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-sundin_temp-1.0/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/cmnist \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin
Owner
Andrew Jesson
PhD in Machine Learning at University of Oxford @OATML
Andrew Jesson
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022