Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Overview

Impression-Learning-Camera-Ready

Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity," by Colin Bredenberg, Benjamin S. H. Lyo, Eero P. Simoncelli, and Cristina Savin.

Requirements

-numpy

-time

-os

-copy

-deepcopy

-re

-matplotlib.pyplot

-pickle

-scipy

For the Free Spoken Digits Dataset simulations: -librosa

For the backpropagation implementation: -pytorch (https://pytorch.org/)

Instructions

In what follows, we will summarize how to reproduce the results of our paper with the code. Though some of our results require a cluster, our primary results (training + figure generation) can be completed in ~5-10 minutes on a personal computer.

Experimental Parameters (il_exp_params.py) This file specifies the particular type of simulation to run, and selects simulation hyperparameters accordingly.

To generate Figure 1 (~5 min runtime): set mode = 'standard'. This can be run on a local computer.

To generate Figure 2: set mode = 'SNR' (Fig. 2a-c) or set mode = 'dimensionality' (Fig. 2d). This will require a cluster.

To generate Figure 3: set mode = 'switch_period'. This will require a cluster.

To generate Figure 4 (~8 min runtime): set mode = 'Vocal_Digits'. This can be run on a local computer. Running this simulation will require librosa, as well as our preprocessed dataset (See Preprocessing FSDD).

To save data after a simulation, set save = True

Running a simulation (impression_learning.py) To run a simulation, simply run impression_learning.py after setting experimental parameters appropriately.

Plotting (il_plot_generator.py) To plot data after a simulation, simply run il_plot_generator.py. We ran these files consecutively in an IDE (e.g. Spyder). To save the results of a simulation, set image_save = True, which will save images in your local directory.

Backpropagation controls: We used Pytorch to separately train our backpropagation control, which has its own experimental parameters.

Experimental Parameters (il_exp_params_bp.py): array_num determines the dimensionality of the latent space.

Running a simulation and generating plots (il_backprop.py):

To run a simulation, simply run il_backprop.py. Plots for the chosen dimensionality will automatically be produced at the end of simulation.

Preprocessing the Free Spoken Digits Dataset (FSDD) (il_fsdd_preprocessing.py) For Figure 4 we generate spectrograms from the FSDD. Generating this plot will require our preprocessed data, run on the data from the FSDD (https://github.com/Jakobovski/free-spoken-digit-dataset). To preprocess the data, set your folder path to the location of your downloaded FSDD recordings folder, and set your output path to the location of your downloaded Impression Learning code. All that remains is to run the il_fsdd_preprocessing.py file (~5 min runtime).

PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023