Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Overview

Impression-Learning-Camera-Ready

Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity," by Colin Bredenberg, Benjamin S. H. Lyo, Eero P. Simoncelli, and Cristina Savin.

Requirements

-numpy

-time

-os

-copy

-deepcopy

-re

-matplotlib.pyplot

-pickle

-scipy

For the Free Spoken Digits Dataset simulations: -librosa

For the backpropagation implementation: -pytorch (https://pytorch.org/)

Instructions

In what follows, we will summarize how to reproduce the results of our paper with the code. Though some of our results require a cluster, our primary results (training + figure generation) can be completed in ~5-10 minutes on a personal computer.

Experimental Parameters (il_exp_params.py) This file specifies the particular type of simulation to run, and selects simulation hyperparameters accordingly.

To generate Figure 1 (~5 min runtime): set mode = 'standard'. This can be run on a local computer.

To generate Figure 2: set mode = 'SNR' (Fig. 2a-c) or set mode = 'dimensionality' (Fig. 2d). This will require a cluster.

To generate Figure 3: set mode = 'switch_period'. This will require a cluster.

To generate Figure 4 (~8 min runtime): set mode = 'Vocal_Digits'. This can be run on a local computer. Running this simulation will require librosa, as well as our preprocessed dataset (See Preprocessing FSDD).

To save data after a simulation, set save = True

Running a simulation (impression_learning.py) To run a simulation, simply run impression_learning.py after setting experimental parameters appropriately.

Plotting (il_plot_generator.py) To plot data after a simulation, simply run il_plot_generator.py. We ran these files consecutively in an IDE (e.g. Spyder). To save the results of a simulation, set image_save = True, which will save images in your local directory.

Backpropagation controls: We used Pytorch to separately train our backpropagation control, which has its own experimental parameters.

Experimental Parameters (il_exp_params_bp.py): array_num determines the dimensionality of the latent space.

Running a simulation and generating plots (il_backprop.py):

To run a simulation, simply run il_backprop.py. Plots for the chosen dimensionality will automatically be produced at the end of simulation.

Preprocessing the Free Spoken Digits Dataset (FSDD) (il_fsdd_preprocessing.py) For Figure 4 we generate spectrograms from the FSDD. Generating this plot will require our preprocessed data, run on the data from the FSDD (https://github.com/Jakobovski/free-spoken-digit-dataset). To preprocess the data, set your folder path to the location of your downloaded FSDD recordings folder, and set your output path to the location of your downloaded Impression Learning code. All that remains is to run the il_fsdd_preprocessing.py file (~5 min runtime).

PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022