Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Related tags

Deep Learningdeepex
Overview

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation

Source code repo for paper Zero-Shot Information Extraction as a Unified Text-to-Triple Translation, EMNLP 2021.

Installation

git clone --recursive [email protected]:cgraywang/deepex.git
cd ./deepex
conda create --name deepex python=3.7 -y
conda activate deepex
pip install -r requirements.txt
pip install -e .

Requires PyTorch version 1.5.1 or above with CUDA. PyTorch 1.7.1 with CUDA 10.1 is tested. Please refer to https://pytorch.org/get-started/locally/ for installing PyTorch.

Dataset Preparation

Relation Classification

FewRel

You can add --prepare-rc-dataset argument when running the scripts in this section, which would allow the script to automatically handle the preparation of FewRel dataset.

Or, you could manually download and prepare the FewRel dataset using the following script:

bash scripts/rc/prep_FewRel.sh

The processed data will be stored at data/FewRel/data.jsonl.

TACRED

TACRED is licensed under LDC, please first download TACRED dataset from link. The downloaded file should be named as tacred_LDC2018T24.tgz.

After downloading and correctly naming the tacred .tgz data file, you can add --prepare-rc-dataset argument when running the scripts in this section, which would allow the script to automatically handle the preparation of TACRED dataset.

Or, you could manually download and prepare the TACRED dataset using the following script:

bash scripts/rc/prep_TACRED.sh

The processed data will be stored at data/TACRED/data.jsonl.

Scripts for Reproducing Results

This section contains the scripts for running the tasks with default setting (e.g.: using model bert-large-cased, using 8 CUDA devices with per-device batch size equal to 4).

To modify the settings, please checkout this section.

Open Information Extraction

bash tasks/OIE_2016.sh
bash tasks/PENN.sh
bash tasks/WEB.sh
bash tasks/NYT.sh

Relation Classification

bash tasks/FewRel.sh
bash tasks/TACRED.sh

Arguments

General script:

python scripts/manager.py --task=<task_name> <other_args>

The default setting is:

python scripts/manager.py --task=<task_name> --model="bert-large-cased" --beam-size=6
                          --max-distance=2048 --batch-size-per-device=4 --stage=0
                          --cuda=0,1,2,3,4,5,6,7

All tasks are already implemented as above .sh files in tasks/, using the default arguments.

The following are the most important command-line arguments for the scripts/manager.py script:

  • --task: The task to be run, supported tasks are OIE_2016, WEB, NYT, PENN, FewRel and TACRED.
  • --model: The pre-trained model type to be used for generating attention matrices to perform beam search on, supported models are bert-base-cased and bert-large-cased.
  • --beam-size: The beam size during beam search.
  • --batch-size-per-device: The batch size on a single device.
  • --stage: Run task starting from an intermediate stage:
    • --stage=0: data preparation and beam-search
    • --stage=1: post processing
    • --stage=2: ranking
    • --stage=3: evaluation
  • --prepare-rc-dataset: If true, automatically run the relation classification dataset preparation scripts. Notice that this argument should be turned on only for relation classification tasks (i.e.: FewRel and TACRED).
  • --cuda: Specify CUDA gpu devices.

Run python scripts/manager.py -h for the full list.

Results

NOTE

We are able to obtain improved or same results compared to the paper's results. We will release the code and datasets for factual probe soon!

Related Work

We implement an extended version of the beam search algorithm proposed in Language Models are Open Knowledge Graphs in src/deepex/model/kgm.py.

Citation

@inproceedings{wang-etal-2021-deepex,
    title = "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation",
    author = "Chenguang Wang and Xiao Liu and Zui Chen and Haoyun Hong and Jie Tang and Dawn Song",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    publisher = "Association for Computational Linguistics"
}

@article{wang-etal-2020-language,
    title = "Language Models are Open Knowledge Graphs",
    author = "Chenguang Wang and Xiao Liu and Dawn Song",
    journal = "arXiv preprint arXiv:2010.11967",
    year = "2020"
}
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022