The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Overview

Improved Techniques for Training Score-Based Generative Models

This repo contains the official implementation for the paper Improved Techniques for Training Score-Based Generative Models.

by Yang Song and Stefano Ermon, Stanford AI Lab.

Note: The method has been extended by the subsequent work Score-Based Generative Modeling through Stochastic Differential Equations (code) that allows better sample quality and exact log-likelihood computation.


We significantly improve the method proposed in Generative Modeling by Estimating Gradients of the Data Distribution. Score-based generative models are flexible neural networks trained to capture the score function of an underlying data distribution—a vector field pointing to directions where the data density increases most rapidly. We present new techniques to improve the performance of score-based generative models, scaling them to high resolution images that are previously impossible. Without requiring adversarial training, they can produce sharp and diverse image samples that rival GANs.

samples

(From left to right: Our samples on FFHQ 256px, LSUN bedroom 128px, LSUN tower 128px, LSUN church_outdoor 96px, and CelebA 64px.)

Running Experiments

Dependencies

Run the following to install all necessary python packages for our code.

pip install -r requirements.txt

Project structure

main.py is the file that you should run for both training and sampling. Execute python main.py --help to get its usage description:

usage: main.py [-h] --config CONFIG [--seed SEED] [--exp EXP] --doc DOC
               [--comment COMMENT] [--verbose VERBOSE] [--test] [--sample]
               [--fast_fid] [--resume_training] [-i IMAGE_FOLDER] [--ni]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --exp EXP             Path for saving running related data.
  --doc DOC             A string for documentation purpose. Will be the name
                        of the log folder.
  --comment COMMENT     A string for experiment comment
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  --test                Whether to test the model
  --sample              Whether to produce samples from the model
  --fast_fid            Whether to do fast fid test
  --resume_training     Whether to resume training
  -i IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The folder name of samples
  --ni                  No interaction. Suitable for Slurm Job launcher

Configuration files are in config/. You don't need to include the prefix config/ when specifying --config . All files generated when running the code is under the directory specified by --exp. They are structured as:

<exp> # a folder named by the argument `--exp` given to main.py
├── datasets # all dataset files
├── logs # contains checkpoints and samples produced during training
│   └── <doc> # a folder named by the argument `--doc` specified to main.py
│      ├── checkpoint_x.pth # the checkpoint file saved at the x-th training iteration
│      ├── config.yml # the configuration file for training this model
│      ├── stdout.txt # all outputs to the console during training
│      └── samples # all samples produced during training
├── fid_samples # contains all samples generated for fast fid computation
│   └── <i> # a folder named by the argument `-i` specified to main.py
│      └── ckpt_x # a folder of image samples generated from checkpoint_x.pth
├── image_samples # contains generated samples
│   └── <i>
│       └── image_grid_x.png # samples generated from checkpoint_x.pth       
└── tensorboard # tensorboard files for monitoring training
    └── <doc> # this is the log_dir of tensorboard

Training

For example, we can train an NCSNv2 on LSUN bedroom by running the following

python main.py --config bedroom.yml --doc bedroom

Log files will be saved in <exp>/logs/bedroom.

Sampling

If we want to sample from NCSNv2 on LSUN bedroom, we can edit bedroom.yml to specify the ckpt_id under the group sampling, and then run the following

python main.py --sample --config bedroom.yml -i bedroom

Samples will be saved in <exp>/image_samples/bedroom.

We can interpolate between different samples (see more details in the paper). Just set interpolation to true and an appropriate n_interpolations under the group of sampling in bedroom.yml. We can also perform other tasks such as inpainting. Usages should be quite obvious if you read the code and configuration files carefully.

Computing FID values quickly for a range of checkpoints

We can specify begin_ckpt and end_ckpt under the fast_fid group in the configuration file. For example, by running the following command, we can generate a small number of samples per checkpoint within the range begin_ckpt-end_ckpt for a quick (and rough) FID evaluation.

python main.py --fast_fid --config bedroom.yml -i bedroom

You can find samples in <exp>/fid_samples/bedroom.

Pretrained Checkpoints

Link: https://drive.google.com/drive/folders/1217uhIvLg9ZrYNKOR3XTRFSurt4miQrd?usp=sharing

You can produce samples using it on all datasets we tested in the paper. It assumes the --exp argument is set to exp.

References

If you find the code/idea useful for your research, please consider citing

@inproceedings{song2020improved,
  author    = {Yang Song and Stefano Ermon},
  editor    = {Hugo Larochelle and
               Marc'Aurelio Ranzato and
               Raia Hadsell and
               Maria{-}Florina Balcan and
               Hsuan{-}Tien Lin},
  title     = {Improved Techniques for Training Score-Based Generative Models},
  booktitle = {Advances in Neural Information Processing Systems 33: Annual Conference
               on Neural Information Processing Systems 2020, NeurIPS 2020, December
               6-12, 2020, virtual},
  year      = {2020}
}

and/or our previous work

@inproceedings{song2019generative,
  title={Generative Modeling by Estimating Gradients of the Data Distribution},
  author={Song, Yang and Ermon, Stefano},
  booktitle={Advances in Neural Information Processing Systems},
  pages={11895--11907},
  year={2019}
}
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023