The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Overview

Improved Techniques for Training Score-Based Generative Models

This repo contains the official implementation for the paper Improved Techniques for Training Score-Based Generative Models.

by Yang Song and Stefano Ermon, Stanford AI Lab.

Note: The method has been extended by the subsequent work Score-Based Generative Modeling through Stochastic Differential Equations (code) that allows better sample quality and exact log-likelihood computation.


We significantly improve the method proposed in Generative Modeling by Estimating Gradients of the Data Distribution. Score-based generative models are flexible neural networks trained to capture the score function of an underlying data distribution—a vector field pointing to directions where the data density increases most rapidly. We present new techniques to improve the performance of score-based generative models, scaling them to high resolution images that are previously impossible. Without requiring adversarial training, they can produce sharp and diverse image samples that rival GANs.

samples

(From left to right: Our samples on FFHQ 256px, LSUN bedroom 128px, LSUN tower 128px, LSUN church_outdoor 96px, and CelebA 64px.)

Running Experiments

Dependencies

Run the following to install all necessary python packages for our code.

pip install -r requirements.txt

Project structure

main.py is the file that you should run for both training and sampling. Execute python main.py --help to get its usage description:

usage: main.py [-h] --config CONFIG [--seed SEED] [--exp EXP] --doc DOC
               [--comment COMMENT] [--verbose VERBOSE] [--test] [--sample]
               [--fast_fid] [--resume_training] [-i IMAGE_FOLDER] [--ni]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --exp EXP             Path for saving running related data.
  --doc DOC             A string for documentation purpose. Will be the name
                        of the log folder.
  --comment COMMENT     A string for experiment comment
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  --test                Whether to test the model
  --sample              Whether to produce samples from the model
  --fast_fid            Whether to do fast fid test
  --resume_training     Whether to resume training
  -i IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The folder name of samples
  --ni                  No interaction. Suitable for Slurm Job launcher

Configuration files are in config/. You don't need to include the prefix config/ when specifying --config . All files generated when running the code is under the directory specified by --exp. They are structured as:

<exp> # a folder named by the argument `--exp` given to main.py
├── datasets # all dataset files
├── logs # contains checkpoints and samples produced during training
│   └── <doc> # a folder named by the argument `--doc` specified to main.py
│      ├── checkpoint_x.pth # the checkpoint file saved at the x-th training iteration
│      ├── config.yml # the configuration file for training this model
│      ├── stdout.txt # all outputs to the console during training
│      └── samples # all samples produced during training
├── fid_samples # contains all samples generated for fast fid computation
│   └── <i> # a folder named by the argument `-i` specified to main.py
│      └── ckpt_x # a folder of image samples generated from checkpoint_x.pth
├── image_samples # contains generated samples
│   └── <i>
│       └── image_grid_x.png # samples generated from checkpoint_x.pth       
└── tensorboard # tensorboard files for monitoring training
    └── <doc> # this is the log_dir of tensorboard

Training

For example, we can train an NCSNv2 on LSUN bedroom by running the following

python main.py --config bedroom.yml --doc bedroom

Log files will be saved in <exp>/logs/bedroom.

Sampling

If we want to sample from NCSNv2 on LSUN bedroom, we can edit bedroom.yml to specify the ckpt_id under the group sampling, and then run the following

python main.py --sample --config bedroom.yml -i bedroom

Samples will be saved in <exp>/image_samples/bedroom.

We can interpolate between different samples (see more details in the paper). Just set interpolation to true and an appropriate n_interpolations under the group of sampling in bedroom.yml. We can also perform other tasks such as inpainting. Usages should be quite obvious if you read the code and configuration files carefully.

Computing FID values quickly for a range of checkpoints

We can specify begin_ckpt and end_ckpt under the fast_fid group in the configuration file. For example, by running the following command, we can generate a small number of samples per checkpoint within the range begin_ckpt-end_ckpt for a quick (and rough) FID evaluation.

python main.py --fast_fid --config bedroom.yml -i bedroom

You can find samples in <exp>/fid_samples/bedroom.

Pretrained Checkpoints

Link: https://drive.google.com/drive/folders/1217uhIvLg9ZrYNKOR3XTRFSurt4miQrd?usp=sharing

You can produce samples using it on all datasets we tested in the paper. It assumes the --exp argument is set to exp.

References

If you find the code/idea useful for your research, please consider citing

@inproceedings{song2020improved,
  author    = {Yang Song and Stefano Ermon},
  editor    = {Hugo Larochelle and
               Marc'Aurelio Ranzato and
               Raia Hadsell and
               Maria{-}Florina Balcan and
               Hsuan{-}Tien Lin},
  title     = {Improved Techniques for Training Score-Based Generative Models},
  booktitle = {Advances in Neural Information Processing Systems 33: Annual Conference
               on Neural Information Processing Systems 2020, NeurIPS 2020, December
               6-12, 2020, virtual},
  year      = {2020}
}

and/or our previous work

@inproceedings{song2019generative,
  title={Generative Modeling by Estimating Gradients of the Data Distribution},
  author={Song, Yang and Ermon, Stefano},
  booktitle={Advances in Neural Information Processing Systems},
  pages={11895--11907},
  year={2019}
}
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022