Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

Overview

On the Bottleneck of Graph Neural Networks and its Practical Implications

This is the official implementation of the paper: On the Bottleneck of Graph Neural Networks and its Practical Implications (ICLR'2021).

By Uri Alon and Eran Yahav. See also the [video], [poster] and [slides].

this repository is divided into three sub-projects:

  1. The subdirectory tf-gnn-samples is a clone of https://github.com/microsoft/tf-gnn-samples by Brockschmidt (ICML'2020). This project can be used to reproduce the QM9 and VarMisuse experiments of Section 4.2 and 4.2 in the paper. This sub-project depends on TensorFlow 1.13. The instructions for our clone are the same as their original code, except that reproducing our experiments (the QM9 dataset and VarMisuse) can be done by running the script tf-gnn-samples/run_qm9_benchs_fa.py or tf-gnn-samples/run_varmisuse_benchs_fa.py instead of their original scripts. For additional dependencies and instructions, see their original README: https://github.com/microsoft/tf-gnn-samples/blob/master/README.md. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer and we describe in our paper.
  2. The subdirectory gnn-comparison is a clone of https://github.com/diningphil/gnn-comparison by Errica et al. (ICLR'2020). This project can be used to reproduce the biological experiments (Section 4.3, the ENZYMES and NCI1 datasets). This sub-project depends on PyTorch 1.4 and Pytorch-Geometric. For additional dependencies and instructions, see their original README: https://github.com/diningphil/gnn-comparison/blob/master/README.md. The instructions for our clone are the same, except that we added an additional flag to every config_*.yml file, called last_layer_fa, which is set to True by default, and reproduces our experiments. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer.
  3. The main directory (in which this file resides) can be used to reproduce the experiments of Section 4.1 in the paper, for the "Tree-NeighborsMatch" problem. The rest of this README file includes the instructions for this main directory. This repository can be used to reproduce the experiments of

This project was designed to be useful in experimenting with new GNN architectures and new solutions for the over-squashing problem.

Feel free to open an issue with any questions.

The Tree-NeighborsMatch problem

alt text

Requirements

Dependencies

This project is based on PyTorch 1.4.0 and the PyTorch Geometric library.

pip install -r requirements.txt

The requirements.txt file lists the additional requirements. However, PyTorch Geometric might requires manual installation, and we thus recommend to use the requirements.txt file only afterward.

Verify that importing the dependencies goes without errors:

python -c 'import torch; import torch_geometric'

Hardware

Training on large trees (depth=8) might require ~60GB of RAM and about 10GB of GPU memory. GPU memory can be compromised by using a smaller batch size and using the --accum_grad flag.

For example, instead of running:

python main.py --batch_size 1024 --type GGNN

The following uses gradient accumulation, and takes less GPU memory:

python main.py --batch_size 512 --accum_grad 2 --type GGNN

Reproducing Experiments

To run a single experiment from the paper, run:

python main.py --help

And see the available flags. For example, to train a GGNN with depth=4, run:

python main.py --task DICTIONARY --eval_every 1000 --depth 4 --num_layers 5 --batch_size 1024 --type GGNN

To train a GNN across all depths, run one of the following:

python run-gcn-2-8.py
python run-gat-2-8.py
python run-ggnn-2-8.py
python run-gin-2-8.py

Results

The results of running the above scripts are (Section 4.1 in the paper):

alt text

r: 2 3 4 5 6 7 8
GGNN 1.0 1.0 1.0 0.60 0.38 0.21 0.16
GAT 1.0 1.0 1.0 0.41 0.21 0.15 0.11
GIN 1.0 1.0 0.77 0.29 0.20
GCN 1.0 1.0 0.70 0.19 0.14 0.09 0.08

Experiment with other GNN types

To experiment with other GNN types:

  • Add the new GNN type to the GNN_TYPE enum here, for example: MY_NEW_TYPE = auto()
  • Add another elif self is GNN_TYPE.MY_NEW_TYPE: to instantiate the new GNN type object here
  • Use the new type as a flag for the main.py file:
python main.py --type MY_NEW_TYPE ...

Citation

If you want to cite this work, please use this bibtex entry:

@inproceedings{
    alon2021on,
    title={On the Bottleneck of Graph Neural Networks and its Practical Implications},
    author={Uri Alon and Eran Yahav},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=i80OPhOCVH2}
}
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022