Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

Overview

On the Bottleneck of Graph Neural Networks and its Practical Implications

This is the official implementation of the paper: On the Bottleneck of Graph Neural Networks and its Practical Implications (ICLR'2021).

By Uri Alon and Eran Yahav. See also the [video], [poster] and [slides].

this repository is divided into three sub-projects:

  1. The subdirectory tf-gnn-samples is a clone of https://github.com/microsoft/tf-gnn-samples by Brockschmidt (ICML'2020). This project can be used to reproduce the QM9 and VarMisuse experiments of Section 4.2 and 4.2 in the paper. This sub-project depends on TensorFlow 1.13. The instructions for our clone are the same as their original code, except that reproducing our experiments (the QM9 dataset and VarMisuse) can be done by running the script tf-gnn-samples/run_qm9_benchs_fa.py or tf-gnn-samples/run_varmisuse_benchs_fa.py instead of their original scripts. For additional dependencies and instructions, see their original README: https://github.com/microsoft/tf-gnn-samples/blob/master/README.md. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer and we describe in our paper.
  2. The subdirectory gnn-comparison is a clone of https://github.com/diningphil/gnn-comparison by Errica et al. (ICLR'2020). This project can be used to reproduce the biological experiments (Section 4.3, the ENZYMES and NCI1 datasets). This sub-project depends on PyTorch 1.4 and Pytorch-Geometric. For additional dependencies and instructions, see their original README: https://github.com/diningphil/gnn-comparison/blob/master/README.md. The instructions for our clone are the same, except that we added an additional flag to every config_*.yml file, called last_layer_fa, which is set to True by default, and reproduces our experiments. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer.
  3. The main directory (in which this file resides) can be used to reproduce the experiments of Section 4.1 in the paper, for the "Tree-NeighborsMatch" problem. The rest of this README file includes the instructions for this main directory. This repository can be used to reproduce the experiments of

This project was designed to be useful in experimenting with new GNN architectures and new solutions for the over-squashing problem.

Feel free to open an issue with any questions.

The Tree-NeighborsMatch problem

alt text

Requirements

Dependencies

This project is based on PyTorch 1.4.0 and the PyTorch Geometric library.

pip install -r requirements.txt

The requirements.txt file lists the additional requirements. However, PyTorch Geometric might requires manual installation, and we thus recommend to use the requirements.txt file only afterward.

Verify that importing the dependencies goes without errors:

python -c 'import torch; import torch_geometric'

Hardware

Training on large trees (depth=8) might require ~60GB of RAM and about 10GB of GPU memory. GPU memory can be compromised by using a smaller batch size and using the --accum_grad flag.

For example, instead of running:

python main.py --batch_size 1024 --type GGNN

The following uses gradient accumulation, and takes less GPU memory:

python main.py --batch_size 512 --accum_grad 2 --type GGNN

Reproducing Experiments

To run a single experiment from the paper, run:

python main.py --help

And see the available flags. For example, to train a GGNN with depth=4, run:

python main.py --task DICTIONARY --eval_every 1000 --depth 4 --num_layers 5 --batch_size 1024 --type GGNN

To train a GNN across all depths, run one of the following:

python run-gcn-2-8.py
python run-gat-2-8.py
python run-ggnn-2-8.py
python run-gin-2-8.py

Results

The results of running the above scripts are (Section 4.1 in the paper):

alt text

r: 2 3 4 5 6 7 8
GGNN 1.0 1.0 1.0 0.60 0.38 0.21 0.16
GAT 1.0 1.0 1.0 0.41 0.21 0.15 0.11
GIN 1.0 1.0 0.77 0.29 0.20
GCN 1.0 1.0 0.70 0.19 0.14 0.09 0.08

Experiment with other GNN types

To experiment with other GNN types:

  • Add the new GNN type to the GNN_TYPE enum here, for example: MY_NEW_TYPE = auto()
  • Add another elif self is GNN_TYPE.MY_NEW_TYPE: to instantiate the new GNN type object here
  • Use the new type as a flag for the main.py file:
python main.py --type MY_NEW_TYPE ...

Citation

If you want to cite this work, please use this bibtex entry:

@inproceedings{
    alon2021on,
    title={On the Bottleneck of Graph Neural Networks and its Practical Implications},
    author={Uri Alon and Eran Yahav},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=i80OPhOCVH2}
}
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022