audioLIME: Listenable Explanations Using Source Separation

Overview

audioLIME

This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music information retrival (MIR). audioLIME is based on the method lime (local interpretable model-agnostic explanations) work presented in this paper and uses source separation estimates in order to create interpretable components.

Citing

If you use audioLIME in your work, please cite it:

@misc{haunschmid2020audiolime,
    title={{audioLIME: Listenable Explanations Using Source Separation}},
    author={Verena Haunschmid and Ethan Manilow and Gerhard Widmer},
    year={2020},
    eprint={2008.00582},
    archivePrefix={arXiv},
    primaryClass={cs.SD},
    howpublished={13th International Workshop on Machine Learning and Music}
}

Publications

audioLIME is introduced/used in the following publications:

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, audioLIME: Listenable Explanations Using Source Separation

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, Towards Musically Meaningful Explanations Using Source Separation

Installation

The audioLIME package is not on PyPI yet. For installing it, clone the git repo and install it using setup.py.

git clone https://github.com/CPJKU/audioLIME.git  # HTTPS
git clone [email protected]:CPJKU/audioLIME.git  # SSH
cd audioLIME
python setup.py install

To install a version for development purposes check out this article.

Tests

To test your installation, the following test are available:

python -m unittest tests.test_SpleeterFactorization

python -m unittest tests.test_DataProviders

Note on Requirements

To keep it lightweight, not all possible dependencies are contained in setup.py. Depending on the factorization you want to use, you might need different packages, e.g. nussl or spleeter.

Installation & Usage of spleeter

pip install spleeter==2.0.2

When you're using spleeter for the first time, it will download the used model in a directory pretrained_models. You can only change the location by setting an environment variable MODEL_PATH before spleeter is imported. There are different ways to set an environment variable, for example:

export MODEL_PATH=/share/home/verena/experiments/spleeter/pretrained_models/

Available Factorizations

Currently we have the following factorizations implemented:

  • SpleeterFactorization based on the source separation system spleeter (code)
  • SoundLIMEFactorization: time-frequency segmentation based on SoundLIME (the original implementation was not flexible enough for our experiments)

Usage Example

Here we demonstrate how we can explain the prediction of FCN (code, Choi 2016, Won 2020) using SpleeterFactorization.

For this to work you need to install the requirements found in the above mentioned repo of the tagger and spleeter:

pip install -r examples/requirements.txt
    data_provider = RawAudioProvider(audio_path)
    spleeter_factorization = SpleeterFactorization(data_provider,
                                                   n_temporal_segments=10,
                                                   composition_fn=None,
                                                   model_name='spleeter:5stems')

    explainer = lime_audio.LimeAudioExplainer(verbose=True, absolute_feature_sort=False)

    explanation = explainer.explain_instance(factorization=spleeter_factorization,
                                             predict_fn=predict_fn,
                                             top_labels=1,
                                             num_samples=16384,
                                             batch_size=32
                                             )

For the details on setting everything up, see example_using_spleeter_fcn.

Listen to the input and explanation.

TODOs

  • upload to pypi.org (to allow installation via pip)
  • usage example for SoundLIMEFactorization
  • tutorial in form of a Jupyter Notebook
  • more documentation
You might also like...
Offical implementation for
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Source-to-Source Debuggable Derivatives in Pure Python
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

This repository contains the source code for the paper
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

Releases(v0.0.3)
Owner
Institute of Computational Perception
Johannes Kepler University
Institute of Computational Perception
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023