Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Overview

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

BibTeX

@INPROCEEDINGS{punnappurath2020modeling,
   author={Abhijith Punnappurath and Abdullah Abuolaim and Mahmoud Afifi and Michael S. Brown},
   booktitle={IEEE International Conference on Computational Photography (ICCP)}, 
   title={Modeling Defocus-Disparity in Dual-Pixel Sensors}, 
   year={2020}
}

How to run

  • This is the code for the optimization-based approach described in Section 4.1 of our paper. The implementation is in Matlab.
  • The post-process edge-aware filtering described in Section 4.3 consists of a bilateral solver and a guided filter. Official implementations released by the authors have been used - the bilateral solver is in Python and the guided filter in Matlab.
  • To obtain our final result, run Steps 1, 2, and 3 sequentially, where Step 1 is the main optimization, and Steps 2 and 3 are the post-process bilateral solver and guided filter, respectively.
  • The data corresponding to Fig. 7 of our paper can be found here, and Figs. 1 and 8 can be found here.
  • Running the code as is produces our result in Fig. 8(f) third column.
  • Other outputs can be generated by appropriately setting the input image path here in Step 1, and here and here in Steps 2 and 3, respectively.
    • The img_name variable to use for Steps 2 and 3 will be displayed when Step 1 finishes execution.
  • Note that the optimization-based approach is very slow since it requires minimizing our cost function of equation (7) at each window.
  • Evaluation code can be found here

Dataset

  • Download our dataset used for evaluation in Section 5.4 here.
    • All results in Table 1 were reported on 16-bit uncompressed TIFF images. The dataset shared on the link above contains 8-bit JPEG images (for file size considerations). Results may vary slightly.

Video spotlight

  • Watch the YouTube video here

Visualization of our parameterized dual-pixel kernel of equation 6

DP gif

Also check out

Owner
Abhijith Punnappurath
Abhijith Punnappurath
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
LIAO Shuiying 6 Dec 01, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022