Julia package for multiway (inverse) covariance estimation.

Overview

TensorGraphicalModels

TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inverse covariance matrices.

Installation

] add https://github.com/ywa136/TensorGraphicalModels.jl

Examples

Please check out a Julia colab created for illustration of some functionalities of the package. Here are some basic examples as well:

Example code for fitting a KP inverse covariance model:

using TensorGraphicalModels

model_type = "kp"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list) #multi-dimensional array (tensor) of dimension d_1 × … × d_K × N
Ψ_hat_list = kglasso(X)

Example code for fitting a KS inverse covariance model:

using TensorGraphicalModels

model_type = "ks"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Ψ_hat_list, _ = teralasso(X_kGram)

Example code for fitting a Sylvester inverse covariance model:

using TensorGraphicalModels

model_type = "sylvester"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Psi0 = [sparse(eye(d_list[k])) for k = 1:K]
fun = (iter, Psi) -> [1, time()] # NULL func
lambda = [sqrt(px[k] * log(prod(d_list)) / N) for k = 1:K] 

Ψ_hat_list, _ = syglasso_palm(X, X_kGram, lambda, Psi0, fun = fun)

Example code for fitting a KPCA covariance model:

using TensorGraphicalModels

px = py = 25 #works for K=2 modes only
N = 100
X = zeros((px * py, N))

for i=1:N
    X[:, i] .= vec(rand(MatrixNormal(zeros((px, py)), ScalMat(px, 2.0), ScalMat(py, 4.0))))
end

S = cov(copy(X')) #sample covariance matrix
lambdaL = 20 * (px^2 + py^2 + log(max(px, py, N))) / N
lambdaS = 20 * sqrt(log(px * py)/N)

# robust Kronecker PCA methods using singular value thresholding
Sigma_hat = robust_kron_pca(S, px, py, lambdaL, lambdaS, "SVT"; tau = 0.5, r = 5)
Owner
Wayne Wang
Ph.D. candidate in statistics
Wayne Wang
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022