[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Overview

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng He, Jia Pan

Paper

Accepted to CVPR 2021

图片

Abstract

HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to the deployed expensive sensors and time-consuming computation. Camera-based methods usually need to separately perform road segmentation and view transformation, which often causes distortion and the absence of content.  To push the limits of the technology, we present a novel framework that enables reconstructing a local map formed by road layout and vehicle occupancy in the bird's-eye view given a front-view monocular image only.  In particular, we propose a cross-view transformation module, which takes the constraint of cycle consistency between views into account and makes full use of their correlation to strengthen the view transformation and scene understanding. Considering the relationship between vehicles and roads, we also design a context-aware discriminator to further refine the results. Experiments on public benchmarks show that our method achieves the state-of-the-art performance in the tasks of road layout estimation and vehicle occupancy estimation. Especially for the latter task, our model outperforms all competitors by a large margin. Furthermore, our model runs at 35 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.

Contributions

  • We propose a novel framework that reconstructs a local map formed by top-view road scene layout and vehicle occupancy using a single monocular front-view image only. In particular, we propose a cross-view transformation module which leverages the cycle consistency between views and their correlation to strengthen the view transformation.
  • We also propose a context-aware discriminator that considers the spatial relationship between vehicles and roads in the task of estimating vehicle occupancies.
  • On public benchmarks, it is demonstrated that our model achieves the state-of-the-art performance for the tasks of road layout and vehicle occupancy estimation.

Approach overview

图片

Repository Structure

cross-view/
├── crossView            # Contains scripts for dataloaders and network/model architecture
└── datasets             # Contains datasets
    ├── argoverse        # argoverse dataset
    ├── kitti            # kitti dataset 
├── log                  # Contains a log of network/model
├── losses               # Contains scripts for loss of network/model
├── models               # Contains the saved model of the network/model
├── output               # Contains output of network/model
└── splits
    ├── 3Dobject         # Training and testing splits for KITTI 3DObject Detection dataset 
    ├── argo             # Training and testing splits for Argoverse Tracking v1.0 dataset
    ├── odometry         # Training and testing splits for KITTI Odometry dataset
    └── raw              # Training and testing splits for KITTI RAW dataset(based on Schulter et. al.)

Installation

We recommend setting up a Python 3.7 and Pytorch 1.0 Virtual Environment and installing all the dependencies listed in the requirements file.

git clone https://github.com/JonDoe-297/cross-view.git

cd cross-view
pip install -r requirements.txt

Datasets

In the paper, we've presented results for KITTI 3D Object, KITTI Odometry, KITTI RAW, and Argoverse 3D Tracking v1.0 datasets. For comparison with Schulter et. al., We've used the same training and test splits sequences from the KITTI RAW dataset. For more details about the training/testing splits one can look at the splits directory. And you can download Ground-truth from Monolayout.

# Download KITTI RAW
./data/download_datasets.sh raw

# Download KITTI 3D Object
./data/download_datasets.sh object

# Download KITTI Odometry
./data/download_datasets.sh odometry

# Download Argoverse Tracking v1.0
./data/download_datasets.sh argoverse

The above scripts will download, unzip and store the respective datasets in the datasets directory.

datasets/
└── argoverse                          # argoverse dataset
    └── argoverse-tracking
        └── train1
            └── 1d676737-4110-3f7e-bec0-0c90f74c248f
                ├── car_bev_gt         # Vehicle GT
                ├── road_gt            # Road GT
                ├── stereo_front_left  # RGB image
└── kitti                              # kitti dataset 
    └── object                         # kitti 3D Object dataset 
        └── training
            ├── image_2                # RGB image
            ├── vehicle_256            # Vehicle GT
    ├── odometry                       # kitti odometry dataset 
        └── 00
            ├── image_2                # RGB image
            ├── road_dense128  # Road GT
    ├── raw                            # kitti raw dataset 
        └── 2011_09_26
            └── 2011_09_26_drive_0001_sync
                ├── image_2            # RGB image
                ├── road_dense128      # Road GT

Training

  1. Prepare the corresponding dataset
  2. Run training
# Corss view Road (KITTI Odometry)
python3 train.py --type static --split odometry --data_path ./datasets/odometry/ --model_name <Model Name with specifications>

# Corss view Vehicle (KITTI 3D Object)
python3 train.py --type dynamic --split 3Dobject --data_path ./datasets/kitti/object/training --model_name <Model Name with specifications>

# Corss view Road (KITTI RAW)
python3 train.py --type static --split raw --data_path ./datasets/kitti/raw/  --model_name <Model Name with specifications>

# Corss view Vehicle (Argoverse Tracking v1.0)
python3 train.py --type dynamic --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>

# Corss view Road (Argoverse Tracking v1.0)
python3 train.py --type static --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>
  1. The training model are in "models" (default: ./models)

Testing

  1. Download pre-trained models
  2. Run testing
python3 test.py --type <static/dynamic> --model_path <path to the model directory> --image_path <path to the image directory>  --out_dir <path to the output directory> 
  1. The results are in "output" (default: ./output)

Evaluation

  1. Prepare the corresponding dataset
  2. Download pre-trained models
  3. Run evaluation
# Evaluate on KITTI Odometry 
python3 eval.py --type static --split odometry --model_path <path to the model directory> --data_path ./datasets/odometry --height 512 --width 512 --occ_map_size 128

# Evaluate on KITTI 3D Object
python3 eval.py --type dynamic --split 3Dobject --model_path <path to the model directory> --data_path ./datasets/kitti/object/training

# Evaluate on KITTI RAW
python3 eval.py --type static --split raw --model_path <path to the model directory> --data_path ./datasets/kitti/raw/

# Evaluate on Argoverse Tracking v1.0 (Road)
python3 eval.py --type static --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse/

# Evaluate on Argoverse Tracking v1.0 (Vehicle)
python3 eval.py --type dynamic --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse
  1. The results are in "output" (default: ./output)

Pretrained Models

The following table provides links to the pre-trained models for each dataset mentioned in our paper. The table also shows the corresponding evaluation results for these models.

Dataset Segmentation Objects mIOU(%) mAP(%) Pretrained Model
KITTI 3D Object Vehicle 38.85 51.04 link
KITTI Odometry Road 77.47 86.39 link
KITTI Raw Road 68.26 79.65 link
Argoverse Tracking Vehicle 47.87 62.69 link
Argoverse Tracking Road 76.56 87.30 link

Results

图片

Contact

If you meet any problems, please describe them in issues or contact:

License

This project is released under the MIT License (refer to the LICENSE file for details).This project partially depends on the sources of Monolayout

Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022