[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Overview

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng He, Jia Pan

Paper

Accepted to CVPR 2021

图片

Abstract

HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to the deployed expensive sensors and time-consuming computation. Camera-based methods usually need to separately perform road segmentation and view transformation, which often causes distortion and the absence of content.  To push the limits of the technology, we present a novel framework that enables reconstructing a local map formed by road layout and vehicle occupancy in the bird's-eye view given a front-view monocular image only.  In particular, we propose a cross-view transformation module, which takes the constraint of cycle consistency between views into account and makes full use of their correlation to strengthen the view transformation and scene understanding. Considering the relationship between vehicles and roads, we also design a context-aware discriminator to further refine the results. Experiments on public benchmarks show that our method achieves the state-of-the-art performance in the tasks of road layout estimation and vehicle occupancy estimation. Especially for the latter task, our model outperforms all competitors by a large margin. Furthermore, our model runs at 35 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.

Contributions

  • We propose a novel framework that reconstructs a local map formed by top-view road scene layout and vehicle occupancy using a single monocular front-view image only. In particular, we propose a cross-view transformation module which leverages the cycle consistency between views and their correlation to strengthen the view transformation.
  • We also propose a context-aware discriminator that considers the spatial relationship between vehicles and roads in the task of estimating vehicle occupancies.
  • On public benchmarks, it is demonstrated that our model achieves the state-of-the-art performance for the tasks of road layout and vehicle occupancy estimation.

Approach overview

图片

Repository Structure

cross-view/
├── crossView            # Contains scripts for dataloaders and network/model architecture
└── datasets             # Contains datasets
    ├── argoverse        # argoverse dataset
    ├── kitti            # kitti dataset 
├── log                  # Contains a log of network/model
├── losses               # Contains scripts for loss of network/model
├── models               # Contains the saved model of the network/model
├── output               # Contains output of network/model
└── splits
    ├── 3Dobject         # Training and testing splits for KITTI 3DObject Detection dataset 
    ├── argo             # Training and testing splits for Argoverse Tracking v1.0 dataset
    ├── odometry         # Training and testing splits for KITTI Odometry dataset
    └── raw              # Training and testing splits for KITTI RAW dataset(based on Schulter et. al.)

Installation

We recommend setting up a Python 3.7 and Pytorch 1.0 Virtual Environment and installing all the dependencies listed in the requirements file.

git clone https://github.com/JonDoe-297/cross-view.git

cd cross-view
pip install -r requirements.txt

Datasets

In the paper, we've presented results for KITTI 3D Object, KITTI Odometry, KITTI RAW, and Argoverse 3D Tracking v1.0 datasets. For comparison with Schulter et. al., We've used the same training and test splits sequences from the KITTI RAW dataset. For more details about the training/testing splits one can look at the splits directory. And you can download Ground-truth from Monolayout.

# Download KITTI RAW
./data/download_datasets.sh raw

# Download KITTI 3D Object
./data/download_datasets.sh object

# Download KITTI Odometry
./data/download_datasets.sh odometry

# Download Argoverse Tracking v1.0
./data/download_datasets.sh argoverse

The above scripts will download, unzip and store the respective datasets in the datasets directory.

datasets/
└── argoverse                          # argoverse dataset
    └── argoverse-tracking
        └── train1
            └── 1d676737-4110-3f7e-bec0-0c90f74c248f
                ├── car_bev_gt         # Vehicle GT
                ├── road_gt            # Road GT
                ├── stereo_front_left  # RGB image
└── kitti                              # kitti dataset 
    └── object                         # kitti 3D Object dataset 
        └── training
            ├── image_2                # RGB image
            ├── vehicle_256            # Vehicle GT
    ├── odometry                       # kitti odometry dataset 
        └── 00
            ├── image_2                # RGB image
            ├── road_dense128  # Road GT
    ├── raw                            # kitti raw dataset 
        └── 2011_09_26
            └── 2011_09_26_drive_0001_sync
                ├── image_2            # RGB image
                ├── road_dense128      # Road GT

Training

  1. Prepare the corresponding dataset
  2. Run training
# Corss view Road (KITTI Odometry)
python3 train.py --type static --split odometry --data_path ./datasets/odometry/ --model_name <Model Name with specifications>

# Corss view Vehicle (KITTI 3D Object)
python3 train.py --type dynamic --split 3Dobject --data_path ./datasets/kitti/object/training --model_name <Model Name with specifications>

# Corss view Road (KITTI RAW)
python3 train.py --type static --split raw --data_path ./datasets/kitti/raw/  --model_name <Model Name with specifications>

# Corss view Vehicle (Argoverse Tracking v1.0)
python3 train.py --type dynamic --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>

# Corss view Road (Argoverse Tracking v1.0)
python3 train.py --type static --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>
  1. The training model are in "models" (default: ./models)

Testing

  1. Download pre-trained models
  2. Run testing
python3 test.py --type <static/dynamic> --model_path <path to the model directory> --image_path <path to the image directory>  --out_dir <path to the output directory> 
  1. The results are in "output" (default: ./output)

Evaluation

  1. Prepare the corresponding dataset
  2. Download pre-trained models
  3. Run evaluation
# Evaluate on KITTI Odometry 
python3 eval.py --type static --split odometry --model_path <path to the model directory> --data_path ./datasets/odometry --height 512 --width 512 --occ_map_size 128

# Evaluate on KITTI 3D Object
python3 eval.py --type dynamic --split 3Dobject --model_path <path to the model directory> --data_path ./datasets/kitti/object/training

# Evaluate on KITTI RAW
python3 eval.py --type static --split raw --model_path <path to the model directory> --data_path ./datasets/kitti/raw/

# Evaluate on Argoverse Tracking v1.0 (Road)
python3 eval.py --type static --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse/

# Evaluate on Argoverse Tracking v1.0 (Vehicle)
python3 eval.py --type dynamic --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse
  1. The results are in "output" (default: ./output)

Pretrained Models

The following table provides links to the pre-trained models for each dataset mentioned in our paper. The table also shows the corresponding evaluation results for these models.

Dataset Segmentation Objects mIOU(%) mAP(%) Pretrained Model
KITTI 3D Object Vehicle 38.85 51.04 link
KITTI Odometry Road 77.47 86.39 link
KITTI Raw Road 68.26 79.65 link
Argoverse Tracking Vehicle 47.87 62.69 link
Argoverse Tracking Road 76.56 87.30 link

Results

图片

Contact

If you meet any problems, please describe them in issues or contact:

License

This project is released under the MIT License (refer to the LICENSE file for details).This project partially depends on the sources of Monolayout

Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023