[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Overview

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng He, Jia Pan

Paper

Accepted to CVPR 2021

图片

Abstract

HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to the deployed expensive sensors and time-consuming computation. Camera-based methods usually need to separately perform road segmentation and view transformation, which often causes distortion and the absence of content.  To push the limits of the technology, we present a novel framework that enables reconstructing a local map formed by road layout and vehicle occupancy in the bird's-eye view given a front-view monocular image only.  In particular, we propose a cross-view transformation module, which takes the constraint of cycle consistency between views into account and makes full use of their correlation to strengthen the view transformation and scene understanding. Considering the relationship between vehicles and roads, we also design a context-aware discriminator to further refine the results. Experiments on public benchmarks show that our method achieves the state-of-the-art performance in the tasks of road layout estimation and vehicle occupancy estimation. Especially for the latter task, our model outperforms all competitors by a large margin. Furthermore, our model runs at 35 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.

Contributions

  • We propose a novel framework that reconstructs a local map formed by top-view road scene layout and vehicle occupancy using a single monocular front-view image only. In particular, we propose a cross-view transformation module which leverages the cycle consistency between views and their correlation to strengthen the view transformation.
  • We also propose a context-aware discriminator that considers the spatial relationship between vehicles and roads in the task of estimating vehicle occupancies.
  • On public benchmarks, it is demonstrated that our model achieves the state-of-the-art performance for the tasks of road layout and vehicle occupancy estimation.

Approach overview

图片

Repository Structure

cross-view/
├── crossView            # Contains scripts for dataloaders and network/model architecture
└── datasets             # Contains datasets
    ├── argoverse        # argoverse dataset
    ├── kitti            # kitti dataset 
├── log                  # Contains a log of network/model
├── losses               # Contains scripts for loss of network/model
├── models               # Contains the saved model of the network/model
├── output               # Contains output of network/model
└── splits
    ├── 3Dobject         # Training and testing splits for KITTI 3DObject Detection dataset 
    ├── argo             # Training and testing splits for Argoverse Tracking v1.0 dataset
    ├── odometry         # Training and testing splits for KITTI Odometry dataset
    └── raw              # Training and testing splits for KITTI RAW dataset(based on Schulter et. al.)

Installation

We recommend setting up a Python 3.7 and Pytorch 1.0 Virtual Environment and installing all the dependencies listed in the requirements file.

git clone https://github.com/JonDoe-297/cross-view.git

cd cross-view
pip install -r requirements.txt

Datasets

In the paper, we've presented results for KITTI 3D Object, KITTI Odometry, KITTI RAW, and Argoverse 3D Tracking v1.0 datasets. For comparison with Schulter et. al., We've used the same training and test splits sequences from the KITTI RAW dataset. For more details about the training/testing splits one can look at the splits directory. And you can download Ground-truth from Monolayout.

# Download KITTI RAW
./data/download_datasets.sh raw

# Download KITTI 3D Object
./data/download_datasets.sh object

# Download KITTI Odometry
./data/download_datasets.sh odometry

# Download Argoverse Tracking v1.0
./data/download_datasets.sh argoverse

The above scripts will download, unzip and store the respective datasets in the datasets directory.

datasets/
└── argoverse                          # argoverse dataset
    └── argoverse-tracking
        └── train1
            └── 1d676737-4110-3f7e-bec0-0c90f74c248f
                ├── car_bev_gt         # Vehicle GT
                ├── road_gt            # Road GT
                ├── stereo_front_left  # RGB image
└── kitti                              # kitti dataset 
    └── object                         # kitti 3D Object dataset 
        └── training
            ├── image_2                # RGB image
            ├── vehicle_256            # Vehicle GT
    ├── odometry                       # kitti odometry dataset 
        └── 00
            ├── image_2                # RGB image
            ├── road_dense128  # Road GT
    ├── raw                            # kitti raw dataset 
        └── 2011_09_26
            └── 2011_09_26_drive_0001_sync
                ├── image_2            # RGB image
                ├── road_dense128      # Road GT

Training

  1. Prepare the corresponding dataset
  2. Run training
# Corss view Road (KITTI Odometry)
python3 train.py --type static --split odometry --data_path ./datasets/odometry/ --model_name <Model Name with specifications>

# Corss view Vehicle (KITTI 3D Object)
python3 train.py --type dynamic --split 3Dobject --data_path ./datasets/kitti/object/training --model_name <Model Name with specifications>

# Corss view Road (KITTI RAW)
python3 train.py --type static --split raw --data_path ./datasets/kitti/raw/  --model_name <Model Name with specifications>

# Corss view Vehicle (Argoverse Tracking v1.0)
python3 train.py --type dynamic --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>

# Corss view Road (Argoverse Tracking v1.0)
python3 train.py --type static --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>
  1. The training model are in "models" (default: ./models)

Testing

  1. Download pre-trained models
  2. Run testing
python3 test.py --type <static/dynamic> --model_path <path to the model directory> --image_path <path to the image directory>  --out_dir <path to the output directory> 
  1. The results are in "output" (default: ./output)

Evaluation

  1. Prepare the corresponding dataset
  2. Download pre-trained models
  3. Run evaluation
# Evaluate on KITTI Odometry 
python3 eval.py --type static --split odometry --model_path <path to the model directory> --data_path ./datasets/odometry --height 512 --width 512 --occ_map_size 128

# Evaluate on KITTI 3D Object
python3 eval.py --type dynamic --split 3Dobject --model_path <path to the model directory> --data_path ./datasets/kitti/object/training

# Evaluate on KITTI RAW
python3 eval.py --type static --split raw --model_path <path to the model directory> --data_path ./datasets/kitti/raw/

# Evaluate on Argoverse Tracking v1.0 (Road)
python3 eval.py --type static --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse/

# Evaluate on Argoverse Tracking v1.0 (Vehicle)
python3 eval.py --type dynamic --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse
  1. The results are in "output" (default: ./output)

Pretrained Models

The following table provides links to the pre-trained models for each dataset mentioned in our paper. The table also shows the corresponding evaluation results for these models.

Dataset Segmentation Objects mIOU(%) mAP(%) Pretrained Model
KITTI 3D Object Vehicle 38.85 51.04 link
KITTI Odometry Road 77.47 86.39 link
KITTI Raw Road 68.26 79.65 link
Argoverse Tracking Vehicle 47.87 62.69 link
Argoverse Tracking Road 76.56 87.30 link

Results

图片

Contact

If you meet any problems, please describe them in issues or contact:

License

This project is released under the MIT License (refer to the LICENSE file for details).This project partially depends on the sources of Monolayout

Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022