[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Overview

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng He, Jia Pan

Paper

Accepted to CVPR 2021

图片

Abstract

HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to the deployed expensive sensors and time-consuming computation. Camera-based methods usually need to separately perform road segmentation and view transformation, which often causes distortion and the absence of content.  To push the limits of the technology, we present a novel framework that enables reconstructing a local map formed by road layout and vehicle occupancy in the bird's-eye view given a front-view monocular image only.  In particular, we propose a cross-view transformation module, which takes the constraint of cycle consistency between views into account and makes full use of their correlation to strengthen the view transformation and scene understanding. Considering the relationship between vehicles and roads, we also design a context-aware discriminator to further refine the results. Experiments on public benchmarks show that our method achieves the state-of-the-art performance in the tasks of road layout estimation and vehicle occupancy estimation. Especially for the latter task, our model outperforms all competitors by a large margin. Furthermore, our model runs at 35 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.

Contributions

  • We propose a novel framework that reconstructs a local map formed by top-view road scene layout and vehicle occupancy using a single monocular front-view image only. In particular, we propose a cross-view transformation module which leverages the cycle consistency between views and their correlation to strengthen the view transformation.
  • We also propose a context-aware discriminator that considers the spatial relationship between vehicles and roads in the task of estimating vehicle occupancies.
  • On public benchmarks, it is demonstrated that our model achieves the state-of-the-art performance for the tasks of road layout and vehicle occupancy estimation.

Approach overview

图片

Repository Structure

cross-view/
├── crossView            # Contains scripts for dataloaders and network/model architecture
└── datasets             # Contains datasets
    ├── argoverse        # argoverse dataset
    ├── kitti            # kitti dataset 
├── log                  # Contains a log of network/model
├── losses               # Contains scripts for loss of network/model
├── models               # Contains the saved model of the network/model
├── output               # Contains output of network/model
└── splits
    ├── 3Dobject         # Training and testing splits for KITTI 3DObject Detection dataset 
    ├── argo             # Training and testing splits for Argoverse Tracking v1.0 dataset
    ├── odometry         # Training and testing splits for KITTI Odometry dataset
    └── raw              # Training and testing splits for KITTI RAW dataset(based on Schulter et. al.)

Installation

We recommend setting up a Python 3.7 and Pytorch 1.0 Virtual Environment and installing all the dependencies listed in the requirements file.

git clone https://github.com/JonDoe-297/cross-view.git

cd cross-view
pip install -r requirements.txt

Datasets

In the paper, we've presented results for KITTI 3D Object, KITTI Odometry, KITTI RAW, and Argoverse 3D Tracking v1.0 datasets. For comparison with Schulter et. al., We've used the same training and test splits sequences from the KITTI RAW dataset. For more details about the training/testing splits one can look at the splits directory. And you can download Ground-truth from Monolayout.

# Download KITTI RAW
./data/download_datasets.sh raw

# Download KITTI 3D Object
./data/download_datasets.sh object

# Download KITTI Odometry
./data/download_datasets.sh odometry

# Download Argoverse Tracking v1.0
./data/download_datasets.sh argoverse

The above scripts will download, unzip and store the respective datasets in the datasets directory.

datasets/
└── argoverse                          # argoverse dataset
    └── argoverse-tracking
        └── train1
            └── 1d676737-4110-3f7e-bec0-0c90f74c248f
                ├── car_bev_gt         # Vehicle GT
                ├── road_gt            # Road GT
                ├── stereo_front_left  # RGB image
└── kitti                              # kitti dataset 
    └── object                         # kitti 3D Object dataset 
        └── training
            ├── image_2                # RGB image
            ├── vehicle_256            # Vehicle GT
    ├── odometry                       # kitti odometry dataset 
        └── 00
            ├── image_2                # RGB image
            ├── road_dense128  # Road GT
    ├── raw                            # kitti raw dataset 
        └── 2011_09_26
            └── 2011_09_26_drive_0001_sync
                ├── image_2            # RGB image
                ├── road_dense128      # Road GT

Training

  1. Prepare the corresponding dataset
  2. Run training
# Corss view Road (KITTI Odometry)
python3 train.py --type static --split odometry --data_path ./datasets/odometry/ --model_name <Model Name with specifications>

# Corss view Vehicle (KITTI 3D Object)
python3 train.py --type dynamic --split 3Dobject --data_path ./datasets/kitti/object/training --model_name <Model Name with specifications>

# Corss view Road (KITTI RAW)
python3 train.py --type static --split raw --data_path ./datasets/kitti/raw/  --model_name <Model Name with specifications>

# Corss view Vehicle (Argoverse Tracking v1.0)
python3 train.py --type dynamic --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>

# Corss view Road (Argoverse Tracking v1.0)
python3 train.py --type static --split argo --data_path ./datasets/argoverse/ --model_name <Model Name with specifications>
  1. The training model are in "models" (default: ./models)

Testing

  1. Download pre-trained models
  2. Run testing
python3 test.py --type <static/dynamic> --model_path <path to the model directory> --image_path <path to the image directory>  --out_dir <path to the output directory> 
  1. The results are in "output" (default: ./output)

Evaluation

  1. Prepare the corresponding dataset
  2. Download pre-trained models
  3. Run evaluation
# Evaluate on KITTI Odometry 
python3 eval.py --type static --split odometry --model_path <path to the model directory> --data_path ./datasets/odometry --height 512 --width 512 --occ_map_size 128

# Evaluate on KITTI 3D Object
python3 eval.py --type dynamic --split 3Dobject --model_path <path to the model directory> --data_path ./datasets/kitti/object/training

# Evaluate on KITTI RAW
python3 eval.py --type static --split raw --model_path <path to the model directory> --data_path ./datasets/kitti/raw/

# Evaluate on Argoverse Tracking v1.0 (Road)
python3 eval.py --type static --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse/

# Evaluate on Argoverse Tracking v1.0 (Vehicle)
python3 eval.py --type dynamic --split argo --model_path <path to the model directory> --data_path ./datasets/kitti/argoverse
  1. The results are in "output" (default: ./output)

Pretrained Models

The following table provides links to the pre-trained models for each dataset mentioned in our paper. The table also shows the corresponding evaluation results for these models.

Dataset Segmentation Objects mIOU(%) mAP(%) Pretrained Model
KITTI 3D Object Vehicle 38.85 51.04 link
KITTI Odometry Road 77.47 86.39 link
KITTI Raw Road 68.26 79.65 link
Argoverse Tracking Vehicle 47.87 62.69 link
Argoverse Tracking Road 76.56 87.30 link

Results

图片

Contact

If you meet any problems, please describe them in issues or contact:

License

This project is released under the MIT License (refer to the LICENSE file for details).This project partially depends on the sources of Monolayout

SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022