Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Overview

gMLP - Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Install

$ pip install g-mlp-pytorch

Usage

For masked language modelling

import torch
from g_mlp_pytorch import gMLP

model = gMLP(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 256
)

x = torch.randint(0, 20000, (1, 256))
emb = model(x) # (1, 256, 512)

For image classification

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

You can also add a tiny amount of attention (one-headed) to boost performance, as mentioned in the paper as aMLP, with the addition of one extra keyword attn_dim. This applies to both gMLPVision and gMLP

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6,
    attn_dim = 64
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

Citations

@misc{liu2021pay,
    title   = {Pay Attention to MLPs}, 
    author  = {Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le},
    year    = {2021},
    eprint  = {2105.08050},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Custom image sizes?

    Custom image sizes?

    Hi, Thanks for your great (and very fast) contribution! I was wondering if you could help me figure out how to apply this to a different image size? It's not really an image, but rather a 2D dimensional tensor of 4096X100.

    I saw that I can change the number of channels, so I could just set channels to be 1. But I see that firstly - your implementation is for squared images, and secondly, it requires that image size should be devisable by patch size.

    Since you've written this implementation perhaps you could help me to adapt it for my needs? (and maybe other users for their cases).

    Maybe I could pad the length to be 128 so both would be devisable by 16 for example? but then where do I set different h, w ?

    Thanks.

    opened by danarte 3
  • Parameter count doesnt line up with paper

    Parameter count doesnt line up with paper

    Just a note (and correct me if I misunderstood the paper) -

    The parameter count for the Tiny gMLP doesnt line up with the param count from the paper for 30 layers and 128 dim and 6 ff_mult. Thats probably due to the doubling of parameters here - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L111

    Halving this back to dim_ff + all 3 lines here need to halve their respective dims - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L64-L66

    Then param count is roughly 5.5 M params.

    opened by titu1994 2
  • Add Support for Stochastic Depth

    Add Support for Stochastic Depth

    This PR adds support for stochastic depth, which is used in the paper for the vision experiments. I went ahead an added it to gMLP as well for completeness.

    I tried my best to match your style. Let me know if there are any problems, or if you want me to refactor anything.

    opened by mlw214 2
  • Don't you think this is more legible?

    Don't you think this is more legible?

    ` class SpatialGatingUnit(nn.Module): def init(self, dim, dim_seq, causal = False, act = nn.Identity(), init_eps = 1e-3): super().init() dim_out = dim // 2 self.causal = causal

        self.norm = nn.LayerNorm(dim_out)
        #self.proj = nn.Conv1d(dim_seq, dim_seq, 1)
    
        self.dim_seq = dim_seq
        self.w_ = nn.Parameter(torch.zeros(dim_seq, dim_seq), requires_grad=True)   ####
        self.b_ = nn.Parameter(torch.ones(dim_seq), requires_grad=True)  ####
    
        self.act = act
    
        init_eps /= dim_seq
        #nn.init.uniform_(self.proj.weight, -init_eps, init_eps)
        #nn.init.constant_(self.proj.bias, 1.)
    
    def forward(self, x, gate_res = None): # x -> bsz, len, hidden*6
        device, n = x.device, x.shape[1]
    
        res, gate = x.chunk(2, dim = -1)
        gate = self.norm(gate)
    
        weight, bias = self.w_, self.b_ # weight -> len, len, 1     bias -> len
    
        if self.causal:
            weight.unsqueeze(-1) # TODO
            weight, bias = weight[:n, :n], bias[:n]
            mask = torch.ones(weight.shape[:2], device = device).triu_(1).bool()
            weight = weight.masked_fill(mask[..., None], 0.)
            weight.squeeze(-1)# TODO
    
        gate = torch.matmul(weight, gate) + bias[None, :self.dim_seq, None]   # WZ + b
    
        #gate = F.conv1d(gate, weight, bias)   # WZ + b
    
        if exists(gate_res):
            gate = gate + gate_res
    
        return self.act(gate) * res
    

    `

    opened by ZIZUN 0
  • Potentially missing the high way pass

    Potentially missing the high way pass

    Hello,

    Maybe I missed it, but would you mind pointing out where the high way pass of the gMLP block is in the code? Based on the paper, there is a high way path (addition) between the input and the output. I couldn't find it in the gMLPBlock code.

    Thank you

    opened by Vincent-Li-9701 1
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022