Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Overview

gMLP - Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Install

$ pip install g-mlp-pytorch

Usage

For masked language modelling

import torch
from g_mlp_pytorch import gMLP

model = gMLP(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 256
)

x = torch.randint(0, 20000, (1, 256))
emb = model(x) # (1, 256, 512)

For image classification

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

You can also add a tiny amount of attention (one-headed) to boost performance, as mentioned in the paper as aMLP, with the addition of one extra keyword attn_dim. This applies to both gMLPVision and gMLP

import torch
from g_mlp_pytorch import gMLPVision

model = gMLPVision(
    image_size = 256,
    patch_size = 16,
    num_classes = 1000,
    dim = 512,
    depth = 6,
    attn_dim = 64
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

Citations

@misc{liu2021pay,
    title   = {Pay Attention to MLPs}, 
    author  = {Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le},
    year    = {2021},
    eprint  = {2105.08050},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Custom image sizes?

    Custom image sizes?

    Hi, Thanks for your great (and very fast) contribution! I was wondering if you could help me figure out how to apply this to a different image size? It's not really an image, but rather a 2D dimensional tensor of 4096X100.

    I saw that I can change the number of channels, so I could just set channels to be 1. But I see that firstly - your implementation is for squared images, and secondly, it requires that image size should be devisable by patch size.

    Since you've written this implementation perhaps you could help me to adapt it for my needs? (and maybe other users for their cases).

    Maybe I could pad the length to be 128 so both would be devisable by 16 for example? but then where do I set different h, w ?

    Thanks.

    opened by danarte 3
  • Parameter count doesnt line up with paper

    Parameter count doesnt line up with paper

    Just a note (and correct me if I misunderstood the paper) -

    The parameter count for the Tiny gMLP doesnt line up with the param count from the paper for 30 layers and 128 dim and 6 ff_mult. Thats probably due to the doubling of parameters here - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L111

    Halving this back to dim_ff + all 3 lines here need to halve their respective dims - https://github.com/lucidrains/g-mlp-pytorch/blob/main/g_mlp_pytorch/g_mlp_pytorch.py#L64-L66

    Then param count is roughly 5.5 M params.

    opened by titu1994 2
  • Add Support for Stochastic Depth

    Add Support for Stochastic Depth

    This PR adds support for stochastic depth, which is used in the paper for the vision experiments. I went ahead an added it to gMLP as well for completeness.

    I tried my best to match your style. Let me know if there are any problems, or if you want me to refactor anything.

    opened by mlw214 2
  • Don't you think this is more legible?

    Don't you think this is more legible?

    ` class SpatialGatingUnit(nn.Module): def init(self, dim, dim_seq, causal = False, act = nn.Identity(), init_eps = 1e-3): super().init() dim_out = dim // 2 self.causal = causal

        self.norm = nn.LayerNorm(dim_out)
        #self.proj = nn.Conv1d(dim_seq, dim_seq, 1)
    
        self.dim_seq = dim_seq
        self.w_ = nn.Parameter(torch.zeros(dim_seq, dim_seq), requires_grad=True)   ####
        self.b_ = nn.Parameter(torch.ones(dim_seq), requires_grad=True)  ####
    
        self.act = act
    
        init_eps /= dim_seq
        #nn.init.uniform_(self.proj.weight, -init_eps, init_eps)
        #nn.init.constant_(self.proj.bias, 1.)
    
    def forward(self, x, gate_res = None): # x -> bsz, len, hidden*6
        device, n = x.device, x.shape[1]
    
        res, gate = x.chunk(2, dim = -1)
        gate = self.norm(gate)
    
        weight, bias = self.w_, self.b_ # weight -> len, len, 1     bias -> len
    
        if self.causal:
            weight.unsqueeze(-1) # TODO
            weight, bias = weight[:n, :n], bias[:n]
            mask = torch.ones(weight.shape[:2], device = device).triu_(1).bool()
            weight = weight.masked_fill(mask[..., None], 0.)
            weight.squeeze(-1)# TODO
    
        gate = torch.matmul(weight, gate) + bias[None, :self.dim_seq, None]   # WZ + b
    
        #gate = F.conv1d(gate, weight, bias)   # WZ + b
    
        if exists(gate_res):
            gate = gate + gate_res
    
        return self.act(gate) * res
    

    `

    opened by ZIZUN 0
  • Potentially missing the high way pass

    Potentially missing the high way pass

    Hello,

    Maybe I missed it, but would you mind pointing out where the high way pass of the gMLP block is in the code? Based on the paper, there is a high way path (addition) between the input and the output. I couldn't find it in the gMLPBlock code.

    Thank you

    opened by Vincent-Li-9701 1
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Xi Dongbo 78 Nov 29, 2022