Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Related tags

Deep LearningDetic
Overview

Detecting Twenty-thousand Classes using Image-level Supervision

Detic: A Detector with image classes that can use image-level labels to easily train detectors.

Detecting Twenty-thousand Classes using Image-level Supervision,
Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, Ishan Misra,
arXiv technical report (arXiv 2201.02605)

Features

  • Detects any class given class names (using CLIP).

  • We train the detector on ImageNet-21K dataset with 21K classes.

  • Cross-dataset generalization to OpenImages and Objects365 without finetuning.

  • State-of-the-art results on Open-vocabulary LVIS and Open-vocabulary COCO.

  • Works for DETR-style detectors.

Installation

See installation instructions.

Demo

Integrated into Huggingface Spaces 🤗 using Gradio. Try out the web demo: Hugging Face Spaces

Run our demo using Colab (no GPU needed): Open In Colab

We use the default detectron2 demo interface. For example, to run our 21K model on a messy desk image (image credit David Fouhey) with the lvis vocabulary, run

mkdir models
wget https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth -O models/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth
wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg
python demo.py --config-file configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml --input desk.jpg --output out.jpg --vocabulary lvis --opts MODEL.WEIGHTS models/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth

If setup correctly, the output should look like:

The same model can run with other vocabularies (COCO, OpenImages, or Objects365), or a custom vocabulary. For example:

python demo.py --config-file configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml --input desk.jpg --output out2.jpg --vocabulary custom --custom_vocabulary headphone,webcam,paper,coffe --confidence-threshold 0.3 --opts MODEL.WEIGHTS models/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth

The output should look like:

Note that headphone, paper and coffe (typo intended) are not LVIS classes. Despite the misspelled class name, our detector can produce a reasonable detection for coffe.

Benchmark evaluation and training

Please first prepare datasets, then check our MODEL ZOO to reproduce results in our paper. We highlight key results below:

  • Open-vocabulary LVIS

    mask mAP mask mAP_novel
    Box-Supervised 30.2 16.4
    Detic 32.4 24.9
  • Standard LVIS

    Detector/ Backbone mask mAP mask mAP_rare
    Box-Supervised CenterNet2-ResNet50 31.5 25.6
    Detic CenterNet2-ResNet50 33.2 29.7
    Box-Supervised CenterNet2-SwinB 40.7 35.9
    Detic CenterNet2-SwinB 41.7 41.7
    Detector/ Backbone box mAP box mAP_rare
    Box-Supervised DeformableDETR-ResNet50 31.7 21.4
    Detic DeformableDETR-ResNet50 32.5 26.2
  • Cross-dataset generalization

    Backbone Objects365 box mAP OpenImages box mAP50
    Box-Supervised SwinB 19.1 46.2
    Detic SwinB 21.4 55.2

License

The majority of Detic is licensed under the Apache 2.0 license, however portions of the project are available under separate license terms: SWIN-Transformer, CLIP, and TensorFlow Object Detection API are licensed under the MIT license; UniDet is licensed under the Apache 2.0 license; and the LVIS API is licensed under a custom license (https://github.com/lvis-dataset/lvis-api/blob/master/LICENSE)” If you later add other third party code, please keep this license info updated, and please let us know if that component is licensed under something other than CC-BY-NC, MIT, or CC0

Ethical Considerations

Detic's wide range of detection capabilities may introduce similar challenges to many other visual recognition and open-set recognition methods. As the user can define arbitrary detection classes, class design and semantics may impact the model output.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2021detecting,
  title={Detecting Twenty-thousand Classes using Image-level Supervision},
  author={Zhou, Xingyi and Girdhar, Rohit and Joulin, Armand and Kr{\"a}henb{\"u}hl, Philipp and Misra, Ishan},
  booktitle={arXiv preprint arXiv:2201.02605},
  year={2021}
}
Owner
Meta Research
Meta Research
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023