Official Pytorch implementation for video neural representation (NeRV)

Related tags

Deep LearningNeRV
Overview

NeRV: Neural Representations for Videos (NeurIPS 2021)

Project Page | Paper | UVG Data

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava
This is the official implementation of the paper "NeRV: Neural Representations for Videos ".

Get started

We run with Python 3.8, you can set up a conda environment with all dependencies like so:

pip install -r requirements.txt 

High-Level structure

The code is organized as follows:

  • train_nerv.py includes a generic traiing routine.
  • model_nerv.py contains the dataloader and neural network architecure
  • data/ directory video/imae dataset, we provide big buck bunny here
  • checkpoint/ directory contains some pre-trained model on big buck bunny dataset
  • log files (tensorboard, txt, state_dict etc.) will be saved in output directory (specified by --outf)

Reproducing experiments

Training experiments

The NeRV-S experiment on 'big buck bunny' can be reproduced with

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none --act swish 

Evaluation experiments

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight, you can specify model quantization with --quant_bit [bit_lenght], yuo can test decoding speed with --eval_fps, below we preovide sample commends for NeRV-S on bunny dataset

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
    --weight checkpoints/nerv_S.pth --eval_only 

Dump predictions with pre-trained model

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
   --weight checkpoints/nerv_S.pth --eval_only  --dump_images

Citation

If you find our work useful in your research, please cite:

@inproceedings{hao2021nerv,
    author = {Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava },
    title = {NeRV: Neural Representations for Videos s},
    booktitle = {NeurIPS},
    year={2021}
}

Contact

If you have any questions, please feel free to email the authors.

【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022