Official Pytorch implementation for video neural representation (NeRV)

Related tags

Deep LearningNeRV
Overview

NeRV: Neural Representations for Videos (NeurIPS 2021)

Project Page | Paper | UVG Data

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava
This is the official implementation of the paper "NeRV: Neural Representations for Videos ".

Get started

We run with Python 3.8, you can set up a conda environment with all dependencies like so:

pip install -r requirements.txt 

High-Level structure

The code is organized as follows:

  • train_nerv.py includes a generic traiing routine.
  • model_nerv.py contains the dataloader and neural network architecure
  • data/ directory video/imae dataset, we provide big buck bunny here
  • checkpoint/ directory contains some pre-trained model on big buck bunny dataset
  • log files (tensorboard, txt, state_dict etc.) will be saved in output directory (specified by --outf)

Reproducing experiments

Training experiments

The NeRV-S experiment on 'big buck bunny' can be reproduced with

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none --act swish 

Evaluation experiments

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight, you can specify model quantization with --quant_bit [bit_lenght], yuo can test decoding speed with --eval_fps, below we preovide sample commends for NeRV-S on bunny dataset

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
    --weight checkpoints/nerv_S.pth --eval_only 

Dump predictions with pre-trained model

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
   --weight checkpoints/nerv_S.pth --eval_only  --dump_images

Citation

If you find our work useful in your research, please cite:

@inproceedings{hao2021nerv,
    author = {Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava },
    title = {NeRV: Neural Representations for Videos s},
    booktitle = {NeurIPS},
    year={2021}
}

Contact

If you have any questions, please feel free to email the authors.

Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022