Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Overview

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

PWC PWC


Results

results on COCO val

Backbone Method Lr Schd PQ Config Download
R-50 Panoptic-SegFormer 1x 48.0 config model
R-50 Panoptic-SegFormer 2x 49.6 config model
R-101 Panoptic-SegFormer 2x 50.6 config model
PVTv2-B5 (much lighter) Panoptic-SegFormer 2x 55.6 config model
Swin-L (window size 7) Panoptic-SegFormer 2x 55.8 config model

Install

Prerequisites

  • Linux
  • Python 3.6+
  • PyTorch 1.5+
  • torchvision
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • mmcv-full==1.3.4
  • mmdet==2.12.0 # higher version may not work
  • timm==0.4.5
  • einops==0.3.0
  • Pillow==8.0.1
  • opencv-python==4.5.2

note: PyTorch1.8 has a bug in its adamw.py and it is solved in PyTorch1.9(see), you can easily solve it by comparing the difference.

install Panoptic SegFormer

python setup.py install 

Datasets

When I began this project, mmdet dose not support panoptic segmentation officially. I convert the dataset from panoptic segmentation format to instance segmentation format for convenience.

1. prepare data (COCO)

cd Panoptic-SegFormer
mkdir datasets
cd datasets
ln -s path_to_coco coco
mkdir annotations/
cd annotations
wget http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip
unzip panoptic_annotations_trainval2017.zip

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

2. convert panoptic format to detection format

cd Panoptic-SegFormer
./tools/convert_panoptic_coco.sh coco

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017_detection_format.json
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   ├── panoptic_val2017_detection_format.json
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

Run (panoptic segmentation)

train

single-machine with 8 gpus.

./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 8

test

./tools/dist_test.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py path/to/model.pth 8

Citing

If you use Panoptic SegFormer in your research, please use the following BibTeX entry.

@article{li2021panoptic,
  title={Panoptic SegFormer},
  author={Li, Zhiqi and Wang, Wenhai and Xie, Enze and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Lu, Tong and Luo, Ping},
  journal={arXiv},
  year={2021}
}

Acknowledgement

Mainly based on Defromable DETR from MMdet.

Thanks very much for other open source works: timm, Panoptic FCN, MaskFomer, QueryInst

Comments
  • How demo one picture result ?

    How demo one picture result ?

    Dear friend, Thanks you for your good job. Now we do not want to download coco datasets, just want to give one picture, segment it and show its result. How to do it ? Best regards,

    opened by delldu 3
  • what's pvt_v2_ap in code?

    what's pvt_v2_ap in code?

    I found there are many names that obscure to understand. For example: pvt_v2_ap what that stands for? and what's single_stage_w_mask stands for?

    image

    and those file differences?

    opened by jinfagang 2
  • how to visualize demo image?

    how to visualize demo image?

    Dear friend, how to visualize the segmentation result of custom images? I run the infererce.py and didn’t get a good result. Like this: 000000

    I think there are some faults in my code.

    Here is my code:

    from mmcv.runner import checkpoint
    from mmdet.apis.inference import init_detector,LoadImage, inference_detector
    import easymd
    import cv2
    import random
    import colorsys
    import numpy as np
    
    def random_colors(N, bright=True):
        brightness = 1.0 if bright else 0.7
        hsv = [(i / float(N), 1, brightness) for i in range(N)]
        colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
        random.shuffle(colors)
        return colors
    
    def apply_mask(image, mask, color, alpha=0.5):
        for c in range(3):
            image[:, :, c] = np.where(mask == 0,
                                      image[:, :, c],
                                      image[:, :, c] *
                                      (1 - alpha) + alpha * color[c] * 255)
        return image
    
    config = './configs/panformer/panformer_pvtb5_24e_coco_panoptic.py'
    #checkpoints = './checkpoints/pseg_r101_r50_latest.pth'
    checkpoints = "./checkpoints/panoptic_segformer_pvtv2b5_2x.pth"
    img_path = "img_path "
    mask_save_path = "save_path"
    
    colors = random_colors(80)
    
    model = init_detector(config,checkpoint=checkpoints)
    
    results = inference_detector(model, [img_path])
    
    img = cv2.imread(img_path)
    
    seg = results['segm'][0]
    N = len(seg)
    
    masked_image = img.copy()
    for i in range(N):
        color = colors[i]
        masks = np.sum(seg[i], axis=0)
        masked_image = apply_mask(masked_image, masks, color)
        # for mask in seg[i]:
        #     masked_image = apply_mask(masked_image, mask, color)
    
    # cv2.imshow("a", masked_image)
    
    opened by garriton 0
  • Location Decoder loss

    Location Decoder loss

    https://github.com/zhiqi-li/Panoptic-SegFormer/blob/e604ef810eaf5101106d221db4b6970c2daca5c9/easymd/models/panformer/panformer_head.py#L360-L364

    Why does the location decoder only compute the losses of the first L-1 layers not the whole L layers?

    opened by hust-nj 0
  • Instruction for single GPU run

    Instruction for single GPU run

    Hi thanks for sharing your works. Iwas trying to run it on single gpu. Would you pls add some instructions or scripts to run it in single gpu? That would be a great help.

    kind regards Abdullah

    opened by nazib 1
  • Impossible to debug, single_gpu code paths are broken

    Impossible to debug, single_gpu code paths are broken

    It seems that the multi gpu training and eval works great, however, while trying to debug you're opt for using a single gpu.
    In that case the code breaks in several parts during the evaluation of the validation set.
    Any chance for a hotfix? :)

    To reproduce, try to run the code from PyCharm in debug mode while there's only one GPU available.

    opened by aviadmx 1
  • Why instance annotations are required along panoptic ones?

    Why instance annotations are required along panoptic ones?

    The model solves the panoptic segmentation task, why does the validation dataset uses the instance segmentation annotations?

    data = dict(
        samples_per_gpu=2,
        workers_per_gpu=2,
        train=dict(
            type=dataset_type,
            ann_file= './datasets/annotations/panoptic_train2017_detection_format.json',
            img_prefix=data_root + 'train2017/',
            pipeline=train_pipeline),
        val=dict( 
          
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline),
        test=dict(
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            #ann_file= './datasets/coco/annotations/image_info_test-dev2017.json',
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            #img_prefix=data_root + '/test2017/',
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline)
            )
    

    We eventually use the instances_val2017.json file instead of panoptic_val2017.json

    opened by aviadmx 3
  • Loading checkpoint

    Loading checkpoint

    When loading the Swin-L checkpoint by adding a load_from line to the config configs/panformer/panformer_swinl_24e_coco_panoptic.pyz as following:

    load_from='./pretrained/panoptic_segformer_swinl_2x.pth'
    

    The loading fails with an error about keys mismatch:

    unexpected key in source state_dict: bbox_head.cls_branches2.0.weight, bbox_head.cls_branches2.0.bias, bbox_head.cls_branches2.1.weight, bbox_head.cls_branches2.1.bias, bbox_head.cls_branches2.2.weight, bbox_head.cls_branches2.2.bias, bbox_head.cls_branches2.3.weight, bbox_head.cls_branches2.3.bias, bbox_head.mask_head.blocks.0.head_norm1.weight, bbox_head.mask_head.blocks.0.head_norm1.bias, bbox_head.mask_head.blocks.0.attn.q.weight, bbox_head.mask_head.blocks.0.attn.q.bias, bbox_head.mask_head.blocks.0.attn.k.weight, bbox_head.mask_head.blocks.0.attn.k.bias, bbox_head.mask_head.blocks.0.attn.v.weight, bbox_head.mask_head.blocks.0.attn.v.bias, bbox_head.mask_head.blocks.0.attn.proj.weight, bbox_head.mask_head.blocks.0.attn.proj.bias, bbox_head.mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.0.attn.linear.0.weight, bbox_head.mask_head.blocks.0.attn.linear.0.bias, bbox_head.mask_head.blocks.0.head_norm2.weight, bbox_head.mask_head.blocks.0.head_norm2.bias, bbox_head.mask_head.blocks.0.mlp.fc1.weight, bbox_head.mask_head.blocks.0.mlp.fc1.bias, bbox_head.mask_head.blocks.0.mlp.fc2.weight, bbox_head.mask_head.blocks.0.mlp.fc2.bias, bbox_head.mask_head.blocks.1.head_norm1.weight, bbox_head.mask_head.blocks.1.head_norm1.bias, bbox_head.mask_head.blocks.1.attn.q.weight, bbox_head.mask_head.blocks.1.attn.q.bias, bbox_head.mask_head.blocks.1.attn.k.weight, bbox_head.mask_head.blocks.1.attn.k.bias, bbox_head.mask_head.blocks.1.attn.v.weight, bbox_head.mask_head.blocks.1.attn.v.bias, bbox_head.mask_head.blocks.1.attn.proj.weight, bbox_head.mask_head.blocks.1.attn.proj.bias, bbox_head.mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.1.attn.linear.0.weight, bbox_head.mask_head.blocks.1.attn.linear.0.bias, bbox_head.mask_head.blocks.1.head_norm2.weight, bbox_head.mask_head.blocks.1.head_norm2.bias, bbox_head.mask_head.blocks.1.mlp.fc1.weight, bbox_head.mask_head.blocks.1.mlp.fc1.bias, bbox_head.mask_head.blocks.1.mlp.fc2.weight, bbox_head.mask_head.blocks.1.mlp.fc2.bias, bbox_head.mask_head.blocks.2.head_norm1.weight, bbox_head.mask_head.blocks.2.head_norm1.bias, bbox_head.mask_head.blocks.2.attn.q.weight, bbox_head.mask_head.blocks.2.attn.q.bias, bbox_head.mask_head.blocks.2.attn.k.weight, bbox_head.mask_head.blocks.2.attn.k.bias, bbox_head.mask_head.blocks.2.attn.v.weight, bbox_head.mask_head.blocks.2.attn.v.bias, bbox_head.mask_head.blocks.2.attn.proj.weight, bbox_head.mask_head.blocks.2.attn.proj.bias, bbox_head.mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.2.attn.linear.0.weight, bbox_head.mask_head.blocks.2.attn.linear.0.bias, bbox_head.mask_head.blocks.2.head_norm2.weight, bbox_head.mask_head.blocks.2.head_norm2.bias, bbox_head.mask_head.blocks.2.mlp.fc1.weight, bbox_head.mask_head.blocks.2.mlp.fc1.bias, bbox_head.mask_head.blocks.2.mlp.fc2.weight, bbox_head.mask_head.blocks.2.mlp.fc2.bias, bbox_head.mask_head.blocks.3.head_norm1.weight, bbox_head.mask_head.blocks.3.head_norm1.bias, bbox_head.mask_head.blocks.3.attn.q.weight, bbox_head.mask_head.blocks.3.attn.q.bias, bbox_head.mask_head.blocks.3.attn.k.weight, bbox_head.mask_head.blocks.3.attn.k.bias, bbox_head.mask_head.blocks.3.attn.v.weight, bbox_head.mask_head.blocks.3.attn.v.bias, bbox_head.mask_head.blocks.3.attn.proj.weight, bbox_head.mask_head.blocks.3.attn.proj.bias, bbox_head.mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.3.attn.linear.0.weight, bbox_head.mask_head.blocks.3.attn.linear.0.bias, bbox_head.mask_head.blocks.3.head_norm2.weight, bbox_head.mask_head.blocks.3.head_norm2.bias, bbox_head.mask_head.blocks.3.mlp.fc1.weight, bbox_head.mask_head.blocks.3.mlp.fc1.bias, bbox_head.mask_head.blocks.3.mlp.fc2.weight, bbox_head.mask_head.blocks.3.mlp.fc2.bias, bbox_head.mask_head.attnen.q.weight, bbox_head.mask_head.attnen.q.bias, bbox_head.mask_head.attnen.k.weight, bbox_head.mask_head.attnen.k.bias, bbox_head.mask_head.attnen.linear_l1.0.weight, bbox_head.mask_head.attnen.linear_l1.0.bias, bbox_head.mask_head.attnen.linear_l2.0.weight, bbox_head.mask_head.attnen.linear_l2.0.bias, bbox_head.mask_head.attnen.linear_l3.0.weight, bbox_head.mask_head.attnen.linear_l3.0.bias, bbox_head.mask_head.attnen.linear.0.weight, bbox_head.mask_head.attnen.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm1.weight, bbox_head.mask_head2.blocks.0.head_norm1.bias, bbox_head.mask_head2.blocks.0.attn.q.weight, bbox_head.mask_head2.blocks.0.attn.q.bias, bbox_head.mask_head2.blocks.0.attn.k.weight, bbox_head.mask_head2.blocks.0.attn.k.bias, bbox_head.mask_head2.blocks.0.attn.v.weight, bbox_head.mask_head2.blocks.0.attn.v.bias, bbox_head.mask_head2.blocks.0.attn.proj.weight, bbox_head.mask_head2.blocks.0.attn.proj.bias, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.0.attn.linear.0.weight, bbox_head.mask_head2.blocks.0.attn.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm2.weight, bbox_head.mask_head2.blocks.0.head_norm2.bias, bbox_head.mask_head2.blocks.0.mlp.fc1.weight, bbox_head.mask_head2.blocks.0.mlp.fc1.bias, bbox_head.mask_head2.blocks.0.mlp.fc2.weight, bbox_head.mask_head2.blocks.0.mlp.fc2.bias, bbox_head.mask_head2.blocks.0.self_attention.qkv.weight, bbox_head.mask_head2.blocks.0.self_attention.qkv.bias, bbox_head.mask_head2.blocks.0.self_attention.proj.weight, bbox_head.mask_head2.blocks.0.self_attention.proj.bias, bbox_head.mask_head2.blocks.0.norm3.weight, bbox_head.mask_head2.blocks.0.norm3.bias, bbox_head.mask_head2.blocks.1.head_norm1.weight, bbox_head.mask_head2.blocks.1.head_norm1.bias, bbox_head.mask_head2.blocks.1.attn.q.weight, bbox_head.mask_head2.blocks.1.attn.q.bias, bbox_head.mask_head2.blocks.1.attn.k.weight, bbox_head.mask_head2.blocks.1.attn.k.bias, bbox_head.mask_head2.blocks.1.attn.v.weight, bbox_head.mask_head2.blocks.1.attn.v.bias, bbox_head.mask_head2.blocks.1.attn.proj.weight, bbox_head.mask_head2.blocks.1.attn.proj.bias, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.1.attn.linear.0.weight, bbox_head.mask_head2.blocks.1.attn.linear.0.bias, bbox_head.mask_head2.blocks.1.head_norm2.weight, bbox_head.mask_head2.blocks.1.head_norm2.bias, bbox_head.mask_head2.blocks.1.mlp.fc1.weight, bbox_head.mask_head2.blocks.1.mlp.fc1.bias, bbox_head.mask_head2.blocks.1.mlp.fc2.weight, bbox_head.mask_head2.blocks.1.mlp.fc2.bias, bbox_head.mask_head2.blocks.1.self_attention.qkv.weight, bbox_head.mask_head2.blocks.1.self_attention.qkv.bias, bbox_head.mask_head2.blocks.1.self_attention.proj.weight, bbox_head.mask_head2.blocks.1.self_attention.proj.bias, bbox_head.mask_head2.blocks.1.norm3.weight, bbox_head.mask_head2.blocks.1.norm3.bias, bbox_head.mask_head2.blocks.2.head_norm1.weight, bbox_head.mask_head2.blocks.2.head_norm1.bias, bbox_head.mask_head2.blocks.2.attn.q.weight, bbox_head.mask_head2.blocks.2.attn.q.bias, bbox_head.mask_head2.blocks.2.attn.k.weight, bbox_head.mask_head2.blocks.2.attn.k.bias, bbox_head.mask_head2.blocks.2.attn.v.weight, bbox_head.mask_head2.blocks.2.attn.v.bias, bbox_head.mask_head2.blocks.2.attn.proj.weight, bbox_head.mask_head2.blocks.2.attn.proj.bias, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.2.attn.linear.0.weight, bbox_head.mask_head2.blocks.2.attn.linear.0.bias, bbox_head.mask_head2.blocks.2.head_norm2.weight, bbox_head.mask_head2.blocks.2.head_norm2.bias, bbox_head.mask_head2.blocks.2.mlp.fc1.weight, bbox_head.mask_head2.blocks.2.mlp.fc1.bias, bbox_head.mask_head2.blocks.2.mlp.fc2.weight, bbox_head.mask_head2.blocks.2.mlp.fc2.bias, bbox_head.mask_head2.blocks.2.self_attention.qkv.weight, bbox_head.mask_head2.blocks.2.self_attention.qkv.bias, bbox_head.mask_head2.blocks.2.self_attention.proj.weight, bbox_head.mask_head2.blocks.2.self_attention.proj.bias, bbox_head.mask_head2.blocks.2.norm3.weight, bbox_head.mask_head2.blocks.2.norm3.bias, bbox_head.mask_head2.blocks.3.head_norm1.weight, bbox_head.mask_head2.blocks.3.head_norm1.bias, bbox_head.mask_head2.blocks.3.attn.q.weight, bbox_head.mask_head2.blocks.3.attn.q.bias, bbox_head.mask_head2.blocks.3.attn.k.weight, bbox_head.mask_head2.blocks.3.attn.k.bias, bbox_head.mask_head2.blocks.3.attn.v.weight, bbox_head.mask_head2.blocks.3.attn.v.bias, bbox_head.mask_head2.blocks.3.attn.proj.weight, bbox_head.mask_head2.blocks.3.attn.proj.bias, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.3.attn.linear.0.weight, bbox_head.mask_head2.blocks.3.attn.linear.0.bias, bbox_head.mask_head2.blocks.3.head_norm2.weight, bbox_head.mask_head2.blocks.3.head_norm2.bias, bbox_head.mask_head2.blocks.3.mlp.fc1.weight, bbox_head.mask_head2.blocks.3.mlp.fc1.bias, bbox_head.mask_head2.blocks.3.mlp.fc2.weight, bbox_head.mask_head2.blocks.3.mlp.fc2.bias, bbox_head.mask_head2.blocks.3.self_attention.qkv.weight, bbox_head.mask_head2.blocks.3.self_attention.qkv.bias, bbox_head.mask_head2.blocks.3.self_attention.proj.weight, bbox_head.mask_head2.blocks.3.self_attention.proj.bias, bbox_head.mask_head2.blocks.3.norm3.weight, bbox_head.mask_head2.blocks.3.norm3.bias, bbox_head.mask_head2.blocks.4.head_norm1.weight, bbox_head.mask_head2.blocks.4.head_norm1.bias, bbox_head.mask_head2.blocks.4.attn.q.weight, bbox_head.mask_head2.blocks.4.attn.q.bias, bbox_head.mask_head2.blocks.4.attn.k.weight, bbox_head.mask_head2.blocks.4.attn.k.bias, bbox_head.mask_head2.blocks.4.attn.v.weight, bbox_head.mask_head2.blocks.4.attn.v.bias, bbox_head.mask_head2.blocks.4.attn.proj.weight, bbox_head.mask_head2.blocks.4.attn.proj.bias, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.4.attn.linear.0.weight, bbox_head.mask_head2.blocks.4.attn.linear.0.bias, bbox_head.mask_head2.blocks.4.head_norm2.weight, bbox_head.mask_head2.blocks.4.head_norm2.bias, bbox_head.mask_head2.blocks.4.mlp.fc1.weight, bbox_head.mask_head2.blocks.4.mlp.fc1.bias, bbox_head.mask_head2.blocks.4.mlp.fc2.weight, bbox_head.mask_head2.blocks.4.mlp.fc2.bias, bbox_head.mask_head2.blocks.4.self_attention.qkv.weight, bbox_head.mask_head2.blocks.4.self_attention.qkv.bias, bbox_head.mask_head2.blocks.4.self_attention.proj.weight, bbox_head.mask_head2.blocks.4.self_attention.proj.bias, bbox_head.mask_head2.blocks.4.norm3.weight, bbox_head.mask_head2.blocks.4.norm3.bias, bbox_head.mask_head2.blocks.5.head_norm1.weight, bbox_head.mask_head2.blocks.5.head_norm1.bias, bbox_head.mask_head2.blocks.5.attn.q.weight, bbox_head.mask_head2.blocks.5.attn.q.bias, bbox_head.mask_head2.blocks.5.attn.k.weight, bbox_head.mask_head2.blocks.5.attn.k.bias, bbox_head.mask_head2.blocks.5.attn.v.weight, bbox_head.mask_head2.blocks.5.attn.v.bias, bbox_head.mask_head2.blocks.5.attn.proj.weight, bbox_head.mask_head2.blocks.5.attn.proj.bias, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.5.attn.linear.0.weight, bbox_head.mask_head2.blocks.5.attn.linear.0.bias, bbox_head.mask_head2.blocks.5.head_norm2.weight, bbox_head.mask_head2.blocks.5.head_norm2.bias, bbox_head.mask_head2.blocks.5.mlp.fc1.weight, bbox_head.mask_head2.blocks.5.mlp.fc1.bias, bbox_head.mask_head2.blocks.5.mlp.fc2.weight, bbox_head.mask_head2.blocks.5.mlp.fc2.bias, bbox_head.mask_head2.blocks.5.self_attention.qkv.weight, bbox_head.mask_head2.blocks.5.self_attention.qkv.bias, bbox_head.mask_head2.blocks.5.self_attention.proj.weight, bbox_head.mask_head2.blocks.5.self_attention.proj.bias, bbox_head.mask_head2.blocks.5.norm3.weight, bbox_head.mask_head2.blocks.5.norm3.bias, bbox_head.mask_head2.attnen.q.weight, bbox_head.mask_head2.attnen.q.bias, bbox_head.mask_head2.attnen.k.weight, bbox_head.mask_head2.attnen.k.bias, bbox_head.mask_head2.attnen.linear_l1.0.weight, bbox_head.mask_head2.attnen.linear_l1.0.bias, bbox_head.mask_head2.attnen.linear_l2.0.weight, bbox_head.mask_head2.attnen.linear_l2.0.bias, bbox_head.mask_head2.attnen.linear_l3.0.weight, bbox_head.mask_head2.attnen.linear_l3.0.bias, bbox_head.mask_head2.attnen.linear.0.weight, bbox_head.mask_head2.attnen.linear.0.bias
    
    missing keys in source state_dict: bbox_head.cls_thing_branches.0.weight, bbox_head.cls_thing_branches.0.bias, bbox_head.cls_thing_branches.1.weight, bbox_head.cls_thing_branches.1.bias, bbox_head.cls_thing_branches.2.weight, bbox_head.cls_thing_branches.2.bias, bbox_head.cls_thing_branches.3.weight, bbox_head.cls_thing_branches.3.bias, bbox_head.things_mask_head.blocks.0.head_norm1.weight, bbox_head.things_mask_head.blocks.0.head_norm1.bias, bbox_head.things_mask_head.blocks.0.attn.q.weight, bbox_head.things_mask_head.blocks.0.attn.q.bias, bbox_head.things_mask_head.blocks.0.attn.k.weight, bbox_head.things_mask_head.blocks.0.attn.k.bias, bbox_head.things_mask_head.blocks.0.attn.v.weight, bbox_head.things_mask_head.blocks.0.attn.v.bias, bbox_head.things_mask_head.blocks.0.attn.proj.weight, bbox_head.things_mask_head.blocks.0.attn.proj.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear.0.bias, bbox_head.things_mask_head.blocks.0.head_norm2.weight, bbox_head.things_mask_head.blocks.0.head_norm2.bias, bbox_head.things_mask_head.blocks.0.mlp.fc1.weight, bbox_head.things_mask_head.blocks.0.mlp.fc1.bias, bbox_head.things_mask_head.blocks.0.mlp.fc2.weight, bbox_head.things_mask_head.blocks.0.mlp.fc2.bias, bbox_head.things_mask_head.blocks.1.head_norm1.weight, bbox_head.things_mask_head.blocks.1.head_norm1.bias, bbox_head.things_mask_head.blocks.1.attn.q.weight, bbox_head.things_mask_head.blocks.1.attn.q.bias, bbox_head.things_mask_head.blocks.1.attn.k.weight, bbox_head.things_mask_head.blocks.1.attn.k.bias, bbox_head.things_mask_head.blocks.1.attn.v.weight, bbox_head.things_mask_head.blocks.1.attn.v.bias, bbox_head.things_mask_head.blocks.1.attn.proj.weight, bbox_head.things_mask_head.blocks.1.attn.proj.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear.0.bias, bbox_head.things_mask_head.blocks.1.head_norm2.weight, bbox_head.things_mask_head.blocks.1.head_norm2.bias, bbox_head.things_mask_head.blocks.1.mlp.fc1.weight, bbox_head.things_mask_head.blocks.1.mlp.fc1.bias, bbox_head.things_mask_head.blocks.1.mlp.fc2.weight, bbox_head.things_mask_head.blocks.1.mlp.fc2.bias, bbox_head.things_mask_head.blocks.2.head_norm1.weight, bbox_head.things_mask_head.blocks.2.head_norm1.bias, bbox_head.things_mask_head.blocks.2.attn.q.weight, bbox_head.things_mask_head.blocks.2.attn.q.bias, bbox_head.things_mask_head.blocks.2.attn.k.weight, bbox_head.things_mask_head.blocks.2.attn.k.bias, bbox_head.things_mask_head.blocks.2.attn.v.weight, bbox_head.things_mask_head.blocks.2.attn.v.bias, bbox_head.things_mask_head.blocks.2.attn.proj.weight, bbox_head.things_mask_head.blocks.2.attn.proj.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear.0.bias, bbox_head.things_mask_head.blocks.2.head_norm2.weight, bbox_head.things_mask_head.blocks.2.head_norm2.bias, bbox_head.things_mask_head.blocks.2.mlp.fc1.weight, bbox_head.things_mask_head.blocks.2.mlp.fc1.bias, bbox_head.things_mask_head.blocks.2.mlp.fc2.weight, bbox_head.things_mask_head.blocks.2.mlp.fc2.bias, bbox_head.things_mask_head.blocks.3.head_norm1.weight, bbox_head.things_mask_head.blocks.3.head_norm1.bias, bbox_head.things_mask_head.blocks.3.attn.q.weight, bbox_head.things_mask_head.blocks.3.attn.q.bias, bbox_head.things_mask_head.blocks.3.attn.k.weight, bbox_head.things_mask_head.blocks.3.attn.k.bias, bbox_head.things_mask_head.blocks.3.attn.v.weight, bbox_head.things_mask_head.blocks.3.attn.v.bias, bbox_head.things_mask_head.blocks.3.attn.proj.weight, bbox_head.things_mask_head.blocks.3.attn.proj.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear.0.bias, bbox_head.things_mask_head.blocks.3.head_norm2.weight, bbox_head.things_mask_head.blocks.3.head_norm2.bias, bbox_head.things_mask_head.blocks.3.mlp.fc1.weight, bbox_head.things_mask_head.blocks.3.mlp.fc1.bias, bbox_head.things_mask_head.blocks.3.mlp.fc2.weight, bbox_head.things_mask_head.blocks.3.mlp.fc2.bias, bbox_head.things_mask_head.attnen.q.weight, bbox_head.things_mask_head.attnen.q.bias, bbox_head.things_mask_head.attnen.k.weight, bbox_head.things_mask_head.attnen.k.bias, bbox_head.things_mask_head.attnen.linear_l1.0.weight, bbox_head.things_mask_head.attnen.linear_l1.0.bias, bbox_head.things_mask_head.attnen.linear_l2.0.weight, bbox_head.things_mask_head.attnen.linear_l2.0.bias, bbox_head.things_mask_head.attnen.linear_l3.0.weight, bbox_head.things_mask_head.attnen.linear_l3.0.bias, bbox_head.things_mask_head.attnen.linear.0.weight, bbox_head.things_mask_head.attnen.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm1.weight, bbox_head.stuff_mask_head.blocks.0.head_norm1.bias, bbox_head.stuff_mask_head.blocks.0.attn.q.weight, bbox_head.stuff_mask_head.blocks.0.attn.q.bias, bbox_head.stuff_mask_head.blocks.0.attn.k.weight, bbox_head.stuff_mask_head.blocks.0.attn.k.bias, bbox_head.stuff_mask_head.blocks.0.attn.v.weight, bbox_head.stuff_mask_head.blocks.0.attn.v.bias, bbox_head.stuff_mask_head.blocks.0.attn.proj.weight, bbox_head.stuff_mask_head.blocks.0.attn.proj.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm2.weight, bbox_head.stuff_mask_head.blocks.0.head_norm2.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.0.norm3.weight, bbox_head.stuff_mask_head.blocks.0.norm3.bias, bbox_head.stuff_mask_head.blocks.1.head_norm1.weight, bbox_head.stuff_mask_head.blocks.1.head_norm1.bias, bbox_head.stuff_mask_head.blocks.1.attn.q.weight, bbox_head.stuff_mask_head.blocks.1.attn.q.bias, bbox_head.stuff_mask_head.blocks.1.attn.k.weight, bbox_head.stuff_mask_head.blocks.1.attn.k.bias, bbox_head.stuff_mask_head.blocks.1.attn.v.weight, bbox_head.stuff_mask_head.blocks.1.attn.v.bias, bbox_head.stuff_mask_head.blocks.1.attn.proj.weight, bbox_head.stuff_mask_head.blocks.1.attn.proj.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.1.head_norm2.weight, bbox_head.stuff_mask_head.blocks.1.head_norm2.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.1.norm3.weight, bbox_head.stuff_mask_head.blocks.1.norm3.bias, bbox_head.stuff_mask_head.blocks.2.head_norm1.weight, bbox_head.stuff_mask_head.blocks.2.head_norm1.bias, bbox_head.stuff_mask_head.blocks.2.attn.q.weight, bbox_head.stuff_mask_head.blocks.2.attn.q.bias, bbox_head.stuff_mask_head.blocks.2.attn.k.weight, bbox_head.stuff_mask_head.blocks.2.attn.k.bias, bbox_head.stuff_mask_head.blocks.2.attn.v.weight, bbox_head.stuff_mask_head.blocks.2.attn.v.bias, bbox_head.stuff_mask_head.blocks.2.attn.proj.weight, bbox_head.stuff_mask_head.blocks.2.attn.proj.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.2.head_norm2.weight, bbox_head.stuff_mask_head.blocks.2.head_norm2.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.2.norm3.weight, bbox_head.stuff_mask_head.blocks.2.norm3.bias, bbox_head.stuff_mask_head.blocks.3.head_norm1.weight, bbox_head.stuff_mask_head.blocks.3.head_norm1.bias, bbox_head.stuff_mask_head.blocks.3.attn.q.weight, bbox_head.stuff_mask_head.blocks.3.attn.q.bias, bbox_head.stuff_mask_head.blocks.3.attn.k.weight, bbox_head.stuff_mask_head.blocks.3.attn.k.bias, bbox_head.stuff_mask_head.blocks.3.attn.v.weight, bbox_head.stuff_mask_head.blocks.3.attn.v.bias, bbox_head.stuff_mask_head.blocks.3.attn.proj.weight, bbox_head.stuff_mask_head.blocks.3.attn.proj.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.3.head_norm2.weight, bbox_head.stuff_mask_head.blocks.3.head_norm2.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.3.norm3.weight, bbox_head.stuff_mask_head.blocks.3.norm3.bias, bbox_head.stuff_mask_head.blocks.4.head_norm1.weight, bbox_head.stuff_mask_head.blocks.4.head_norm1.bias, bbox_head.stuff_mask_head.blocks.4.attn.q.weight, bbox_head.stuff_mask_head.blocks.4.attn.q.bias, bbox_head.stuff_mask_head.blocks.4.attn.k.weight, bbox_head.stuff_mask_head.blocks.4.attn.k.bias, bbox_head.stuff_mask_head.blocks.4.attn.v.weight, bbox_head.stuff_mask_head.blocks.4.attn.v.bias, bbox_head.stuff_mask_head.blocks.4.attn.proj.weight, bbox_head.stuff_mask_head.blocks.4.attn.proj.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.4.head_norm2.weight, bbox_head.stuff_mask_head.blocks.4.head_norm2.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.4.norm3.weight, bbox_head.stuff_mask_head.blocks.4.norm3.bias, bbox_head.stuff_mask_head.blocks.5.head_norm1.weight, bbox_head.stuff_mask_head.blocks.5.head_norm1.bias, bbox_head.stuff_mask_head.blocks.5.attn.q.weight, bbox_head.stuff_mask_head.blocks.5.attn.q.bias, bbox_head.stuff_mask_head.blocks.5.attn.k.weight, bbox_head.stuff_mask_head.blocks.5.attn.k.bias, bbox_head.stuff_mask_head.blocks.5.attn.v.weight, bbox_head.stuff_mask_head.blocks.5.attn.v.bias, bbox_head.stuff_mask_head.blocks.5.attn.proj.weight, bbox_head.stuff_mask_head.blocks.5.attn.proj.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.5.head_norm2.weight, bbox_head.stuff_mask_head.blocks.5.head_norm2.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.5.norm3.weight, bbox_head.stuff_mask_head.blocks.5.norm3.bias, bbox_head.stuff_mask_head.attnen.q.weight, bbox_head.stuff_mask_head.attnen.q.bias, bbox_head.stuff_mask_head.attnen.k.weight, bbox_head.stuff_mask_head.attnen.k.bias, bbox_head.stuff_mask_head.attnen.linear_l1.0.weight, bbox_head.stuff_mask_head.attnen.linear_l1.0.bias, bbox_head.stuff_mask_head.attnen.linear_l2.0.weight, bbox_head.stuff_mask_head.attnen.linear_l2.0.bias, bbox_head.stuff_mask_head.attnen.linear_l3.0.weight, bbox_head.stuff_mask_head.attnen.linear_l3.0.bias, bbox_head.stuff_mask_head.attnen.linear.0.weight, bbox_head.stuff_mask_head.attnen.linear.0.bias
    
    opened by aviadmx 3
  • ImportError Libtorch_cpu.so: undefined symbol

    ImportError Libtorch_cpu.so: undefined symbol

    Thank you for this awesome work

    Unfortunately I can't run the training because I get the following error

    ./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 1
    + CONFIG=./configs/panformer/panformer_r50_24e_coco_panoptic.py
    + GPUS=1
    + PORT=29503
    ++ dirname ./tools/dist_train.sh
    ++ dirname ./tools/dist_train.sh
    + PYTHONPATH=./tools/..:
    + python -m torch.distributed.launch --nproc_per_node=1 --master_port=29503 ./tools/train.py ./configs/panformer/panformer_r50_24e_coco_panoptic.py --launcher pytorch --deterministic
    Traceback (most recent call last):
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 183, in _run_module_as_main
        mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 109, in _get_module_details
        __import__(pkg_name)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/__init__.py", line 197, in <module>
        from torch._C import *  # noqa: F403
    ImportError: /home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so: undefined symbol: _ZNK3c1010TensorImpl23shallow_copy_and_detachERKNS_15VariableVersionEb
    

    This is my environment:

    screen screen1

    opened by EnnioEvo 0
Owner
Nanjing University, China.
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022