Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Overview

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

PWC PWC


Results

results on COCO val

Backbone Method Lr Schd PQ Config Download
R-50 Panoptic-SegFormer 1x 48.0 config model
R-50 Panoptic-SegFormer 2x 49.6 config model
R-101 Panoptic-SegFormer 2x 50.6 config model
PVTv2-B5 (much lighter) Panoptic-SegFormer 2x 55.6 config model
Swin-L (window size 7) Panoptic-SegFormer 2x 55.8 config model

Install

Prerequisites

  • Linux
  • Python 3.6+
  • PyTorch 1.5+
  • torchvision
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • mmcv-full==1.3.4
  • mmdet==2.12.0 # higher version may not work
  • timm==0.4.5
  • einops==0.3.0
  • Pillow==8.0.1
  • opencv-python==4.5.2

note: PyTorch1.8 has a bug in its adamw.py and it is solved in PyTorch1.9(see), you can easily solve it by comparing the difference.

install Panoptic SegFormer

python setup.py install 

Datasets

When I began this project, mmdet dose not support panoptic segmentation officially. I convert the dataset from panoptic segmentation format to instance segmentation format for convenience.

1. prepare data (COCO)

cd Panoptic-SegFormer
mkdir datasets
cd datasets
ln -s path_to_coco coco
mkdir annotations/
cd annotations
wget http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip
unzip panoptic_annotations_trainval2017.zip

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

2. convert panoptic format to detection format

cd Panoptic-SegFormer
./tools/convert_panoptic_coco.sh coco

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017_detection_format.json
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   ├── panoptic_val2017_detection_format.json
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

Run (panoptic segmentation)

train

single-machine with 8 gpus.

./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 8

test

./tools/dist_test.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py path/to/model.pth 8

Citing

If you use Panoptic SegFormer in your research, please use the following BibTeX entry.

@article{li2021panoptic,
  title={Panoptic SegFormer},
  author={Li, Zhiqi and Wang, Wenhai and Xie, Enze and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Lu, Tong and Luo, Ping},
  journal={arXiv},
  year={2021}
}

Acknowledgement

Mainly based on Defromable DETR from MMdet.

Thanks very much for other open source works: timm, Panoptic FCN, MaskFomer, QueryInst

Comments
  • How demo one picture result ?

    How demo one picture result ?

    Dear friend, Thanks you for your good job. Now we do not want to download coco datasets, just want to give one picture, segment it and show its result. How to do it ? Best regards,

    opened by delldu 3
  • what's pvt_v2_ap in code?

    what's pvt_v2_ap in code?

    I found there are many names that obscure to understand. For example: pvt_v2_ap what that stands for? and what's single_stage_w_mask stands for?

    image

    and those file differences?

    opened by jinfagang 2
  • how to visualize demo image?

    how to visualize demo image?

    Dear friend, how to visualize the segmentation result of custom images? I run the infererce.py and didn’t get a good result. Like this: 000000

    I think there are some faults in my code.

    Here is my code:

    from mmcv.runner import checkpoint
    from mmdet.apis.inference import init_detector,LoadImage, inference_detector
    import easymd
    import cv2
    import random
    import colorsys
    import numpy as np
    
    def random_colors(N, bright=True):
        brightness = 1.0 if bright else 0.7
        hsv = [(i / float(N), 1, brightness) for i in range(N)]
        colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
        random.shuffle(colors)
        return colors
    
    def apply_mask(image, mask, color, alpha=0.5):
        for c in range(3):
            image[:, :, c] = np.where(mask == 0,
                                      image[:, :, c],
                                      image[:, :, c] *
                                      (1 - alpha) + alpha * color[c] * 255)
        return image
    
    config = './configs/panformer/panformer_pvtb5_24e_coco_panoptic.py'
    #checkpoints = './checkpoints/pseg_r101_r50_latest.pth'
    checkpoints = "./checkpoints/panoptic_segformer_pvtv2b5_2x.pth"
    img_path = "img_path "
    mask_save_path = "save_path"
    
    colors = random_colors(80)
    
    model = init_detector(config,checkpoint=checkpoints)
    
    results = inference_detector(model, [img_path])
    
    img = cv2.imread(img_path)
    
    seg = results['segm'][0]
    N = len(seg)
    
    masked_image = img.copy()
    for i in range(N):
        color = colors[i]
        masks = np.sum(seg[i], axis=0)
        masked_image = apply_mask(masked_image, masks, color)
        # for mask in seg[i]:
        #     masked_image = apply_mask(masked_image, mask, color)
    
    # cv2.imshow("a", masked_image)
    
    opened by garriton 0
  • Location Decoder loss

    Location Decoder loss

    https://github.com/zhiqi-li/Panoptic-SegFormer/blob/e604ef810eaf5101106d221db4b6970c2daca5c9/easymd/models/panformer/panformer_head.py#L360-L364

    Why does the location decoder only compute the losses of the first L-1 layers not the whole L layers?

    opened by hust-nj 0
  • Instruction for single GPU run

    Instruction for single GPU run

    Hi thanks for sharing your works. Iwas trying to run it on single gpu. Would you pls add some instructions or scripts to run it in single gpu? That would be a great help.

    kind regards Abdullah

    opened by nazib 1
  • Impossible to debug, single_gpu code paths are broken

    Impossible to debug, single_gpu code paths are broken

    It seems that the multi gpu training and eval works great, however, while trying to debug you're opt for using a single gpu.
    In that case the code breaks in several parts during the evaluation of the validation set.
    Any chance for a hotfix? :)

    To reproduce, try to run the code from PyCharm in debug mode while there's only one GPU available.

    opened by aviadmx 1
  • Why instance annotations are required along panoptic ones?

    Why instance annotations are required along panoptic ones?

    The model solves the panoptic segmentation task, why does the validation dataset uses the instance segmentation annotations?

    data = dict(
        samples_per_gpu=2,
        workers_per_gpu=2,
        train=dict(
            type=dataset_type,
            ann_file= './datasets/annotations/panoptic_train2017_detection_format.json',
            img_prefix=data_root + 'train2017/',
            pipeline=train_pipeline),
        val=dict( 
          
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline),
        test=dict(
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            #ann_file= './datasets/coco/annotations/image_info_test-dev2017.json',
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            #img_prefix=data_root + '/test2017/',
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline)
            )
    

    We eventually use the instances_val2017.json file instead of panoptic_val2017.json

    opened by aviadmx 3
  • Loading checkpoint

    Loading checkpoint

    When loading the Swin-L checkpoint by adding a load_from line to the config configs/panformer/panformer_swinl_24e_coco_panoptic.pyz as following:

    load_from='./pretrained/panoptic_segformer_swinl_2x.pth'
    

    The loading fails with an error about keys mismatch:

    unexpected key in source state_dict: bbox_head.cls_branches2.0.weight, bbox_head.cls_branches2.0.bias, bbox_head.cls_branches2.1.weight, bbox_head.cls_branches2.1.bias, bbox_head.cls_branches2.2.weight, bbox_head.cls_branches2.2.bias, bbox_head.cls_branches2.3.weight, bbox_head.cls_branches2.3.bias, bbox_head.mask_head.blocks.0.head_norm1.weight, bbox_head.mask_head.blocks.0.head_norm1.bias, bbox_head.mask_head.blocks.0.attn.q.weight, bbox_head.mask_head.blocks.0.attn.q.bias, bbox_head.mask_head.blocks.0.attn.k.weight, bbox_head.mask_head.blocks.0.attn.k.bias, bbox_head.mask_head.blocks.0.attn.v.weight, bbox_head.mask_head.blocks.0.attn.v.bias, bbox_head.mask_head.blocks.0.attn.proj.weight, bbox_head.mask_head.blocks.0.attn.proj.bias, bbox_head.mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.0.attn.linear.0.weight, bbox_head.mask_head.blocks.0.attn.linear.0.bias, bbox_head.mask_head.blocks.0.head_norm2.weight, bbox_head.mask_head.blocks.0.head_norm2.bias, bbox_head.mask_head.blocks.0.mlp.fc1.weight, bbox_head.mask_head.blocks.0.mlp.fc1.bias, bbox_head.mask_head.blocks.0.mlp.fc2.weight, bbox_head.mask_head.blocks.0.mlp.fc2.bias, bbox_head.mask_head.blocks.1.head_norm1.weight, bbox_head.mask_head.blocks.1.head_norm1.bias, bbox_head.mask_head.blocks.1.attn.q.weight, bbox_head.mask_head.blocks.1.attn.q.bias, bbox_head.mask_head.blocks.1.attn.k.weight, bbox_head.mask_head.blocks.1.attn.k.bias, bbox_head.mask_head.blocks.1.attn.v.weight, bbox_head.mask_head.blocks.1.attn.v.bias, bbox_head.mask_head.blocks.1.attn.proj.weight, bbox_head.mask_head.blocks.1.attn.proj.bias, bbox_head.mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.1.attn.linear.0.weight, bbox_head.mask_head.blocks.1.attn.linear.0.bias, bbox_head.mask_head.blocks.1.head_norm2.weight, bbox_head.mask_head.blocks.1.head_norm2.bias, bbox_head.mask_head.blocks.1.mlp.fc1.weight, bbox_head.mask_head.blocks.1.mlp.fc1.bias, bbox_head.mask_head.blocks.1.mlp.fc2.weight, bbox_head.mask_head.blocks.1.mlp.fc2.bias, bbox_head.mask_head.blocks.2.head_norm1.weight, bbox_head.mask_head.blocks.2.head_norm1.bias, bbox_head.mask_head.blocks.2.attn.q.weight, bbox_head.mask_head.blocks.2.attn.q.bias, bbox_head.mask_head.blocks.2.attn.k.weight, bbox_head.mask_head.blocks.2.attn.k.bias, bbox_head.mask_head.blocks.2.attn.v.weight, bbox_head.mask_head.blocks.2.attn.v.bias, bbox_head.mask_head.blocks.2.attn.proj.weight, bbox_head.mask_head.blocks.2.attn.proj.bias, bbox_head.mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.2.attn.linear.0.weight, bbox_head.mask_head.blocks.2.attn.linear.0.bias, bbox_head.mask_head.blocks.2.head_norm2.weight, bbox_head.mask_head.blocks.2.head_norm2.bias, bbox_head.mask_head.blocks.2.mlp.fc1.weight, bbox_head.mask_head.blocks.2.mlp.fc1.bias, bbox_head.mask_head.blocks.2.mlp.fc2.weight, bbox_head.mask_head.blocks.2.mlp.fc2.bias, bbox_head.mask_head.blocks.3.head_norm1.weight, bbox_head.mask_head.blocks.3.head_norm1.bias, bbox_head.mask_head.blocks.3.attn.q.weight, bbox_head.mask_head.blocks.3.attn.q.bias, bbox_head.mask_head.blocks.3.attn.k.weight, bbox_head.mask_head.blocks.3.attn.k.bias, bbox_head.mask_head.blocks.3.attn.v.weight, bbox_head.mask_head.blocks.3.attn.v.bias, bbox_head.mask_head.blocks.3.attn.proj.weight, bbox_head.mask_head.blocks.3.attn.proj.bias, bbox_head.mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.3.attn.linear.0.weight, bbox_head.mask_head.blocks.3.attn.linear.0.bias, bbox_head.mask_head.blocks.3.head_norm2.weight, bbox_head.mask_head.blocks.3.head_norm2.bias, bbox_head.mask_head.blocks.3.mlp.fc1.weight, bbox_head.mask_head.blocks.3.mlp.fc1.bias, bbox_head.mask_head.blocks.3.mlp.fc2.weight, bbox_head.mask_head.blocks.3.mlp.fc2.bias, bbox_head.mask_head.attnen.q.weight, bbox_head.mask_head.attnen.q.bias, bbox_head.mask_head.attnen.k.weight, bbox_head.mask_head.attnen.k.bias, bbox_head.mask_head.attnen.linear_l1.0.weight, bbox_head.mask_head.attnen.linear_l1.0.bias, bbox_head.mask_head.attnen.linear_l2.0.weight, bbox_head.mask_head.attnen.linear_l2.0.bias, bbox_head.mask_head.attnen.linear_l3.0.weight, bbox_head.mask_head.attnen.linear_l3.0.bias, bbox_head.mask_head.attnen.linear.0.weight, bbox_head.mask_head.attnen.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm1.weight, bbox_head.mask_head2.blocks.0.head_norm1.bias, bbox_head.mask_head2.blocks.0.attn.q.weight, bbox_head.mask_head2.blocks.0.attn.q.bias, bbox_head.mask_head2.blocks.0.attn.k.weight, bbox_head.mask_head2.blocks.0.attn.k.bias, bbox_head.mask_head2.blocks.0.attn.v.weight, bbox_head.mask_head2.blocks.0.attn.v.bias, bbox_head.mask_head2.blocks.0.attn.proj.weight, bbox_head.mask_head2.blocks.0.attn.proj.bias, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.0.attn.linear.0.weight, bbox_head.mask_head2.blocks.0.attn.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm2.weight, bbox_head.mask_head2.blocks.0.head_norm2.bias, bbox_head.mask_head2.blocks.0.mlp.fc1.weight, bbox_head.mask_head2.blocks.0.mlp.fc1.bias, bbox_head.mask_head2.blocks.0.mlp.fc2.weight, bbox_head.mask_head2.blocks.0.mlp.fc2.bias, bbox_head.mask_head2.blocks.0.self_attention.qkv.weight, bbox_head.mask_head2.blocks.0.self_attention.qkv.bias, bbox_head.mask_head2.blocks.0.self_attention.proj.weight, bbox_head.mask_head2.blocks.0.self_attention.proj.bias, bbox_head.mask_head2.blocks.0.norm3.weight, bbox_head.mask_head2.blocks.0.norm3.bias, bbox_head.mask_head2.blocks.1.head_norm1.weight, bbox_head.mask_head2.blocks.1.head_norm1.bias, bbox_head.mask_head2.blocks.1.attn.q.weight, bbox_head.mask_head2.blocks.1.attn.q.bias, bbox_head.mask_head2.blocks.1.attn.k.weight, bbox_head.mask_head2.blocks.1.attn.k.bias, bbox_head.mask_head2.blocks.1.attn.v.weight, bbox_head.mask_head2.blocks.1.attn.v.bias, bbox_head.mask_head2.blocks.1.attn.proj.weight, bbox_head.mask_head2.blocks.1.attn.proj.bias, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.1.attn.linear.0.weight, bbox_head.mask_head2.blocks.1.attn.linear.0.bias, bbox_head.mask_head2.blocks.1.head_norm2.weight, bbox_head.mask_head2.blocks.1.head_norm2.bias, bbox_head.mask_head2.blocks.1.mlp.fc1.weight, bbox_head.mask_head2.blocks.1.mlp.fc1.bias, bbox_head.mask_head2.blocks.1.mlp.fc2.weight, bbox_head.mask_head2.blocks.1.mlp.fc2.bias, bbox_head.mask_head2.blocks.1.self_attention.qkv.weight, bbox_head.mask_head2.blocks.1.self_attention.qkv.bias, bbox_head.mask_head2.blocks.1.self_attention.proj.weight, bbox_head.mask_head2.blocks.1.self_attention.proj.bias, bbox_head.mask_head2.blocks.1.norm3.weight, bbox_head.mask_head2.blocks.1.norm3.bias, bbox_head.mask_head2.blocks.2.head_norm1.weight, bbox_head.mask_head2.blocks.2.head_norm1.bias, bbox_head.mask_head2.blocks.2.attn.q.weight, bbox_head.mask_head2.blocks.2.attn.q.bias, bbox_head.mask_head2.blocks.2.attn.k.weight, bbox_head.mask_head2.blocks.2.attn.k.bias, bbox_head.mask_head2.blocks.2.attn.v.weight, bbox_head.mask_head2.blocks.2.attn.v.bias, bbox_head.mask_head2.blocks.2.attn.proj.weight, bbox_head.mask_head2.blocks.2.attn.proj.bias, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.2.attn.linear.0.weight, bbox_head.mask_head2.blocks.2.attn.linear.0.bias, bbox_head.mask_head2.blocks.2.head_norm2.weight, bbox_head.mask_head2.blocks.2.head_norm2.bias, bbox_head.mask_head2.blocks.2.mlp.fc1.weight, bbox_head.mask_head2.blocks.2.mlp.fc1.bias, bbox_head.mask_head2.blocks.2.mlp.fc2.weight, bbox_head.mask_head2.blocks.2.mlp.fc2.bias, bbox_head.mask_head2.blocks.2.self_attention.qkv.weight, bbox_head.mask_head2.blocks.2.self_attention.qkv.bias, bbox_head.mask_head2.blocks.2.self_attention.proj.weight, bbox_head.mask_head2.blocks.2.self_attention.proj.bias, bbox_head.mask_head2.blocks.2.norm3.weight, bbox_head.mask_head2.blocks.2.norm3.bias, bbox_head.mask_head2.blocks.3.head_norm1.weight, bbox_head.mask_head2.blocks.3.head_norm1.bias, bbox_head.mask_head2.blocks.3.attn.q.weight, bbox_head.mask_head2.blocks.3.attn.q.bias, bbox_head.mask_head2.blocks.3.attn.k.weight, bbox_head.mask_head2.blocks.3.attn.k.bias, bbox_head.mask_head2.blocks.3.attn.v.weight, bbox_head.mask_head2.blocks.3.attn.v.bias, bbox_head.mask_head2.blocks.3.attn.proj.weight, bbox_head.mask_head2.blocks.3.attn.proj.bias, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.3.attn.linear.0.weight, bbox_head.mask_head2.blocks.3.attn.linear.0.bias, bbox_head.mask_head2.blocks.3.head_norm2.weight, bbox_head.mask_head2.blocks.3.head_norm2.bias, bbox_head.mask_head2.blocks.3.mlp.fc1.weight, bbox_head.mask_head2.blocks.3.mlp.fc1.bias, bbox_head.mask_head2.blocks.3.mlp.fc2.weight, bbox_head.mask_head2.blocks.3.mlp.fc2.bias, bbox_head.mask_head2.blocks.3.self_attention.qkv.weight, bbox_head.mask_head2.blocks.3.self_attention.qkv.bias, bbox_head.mask_head2.blocks.3.self_attention.proj.weight, bbox_head.mask_head2.blocks.3.self_attention.proj.bias, bbox_head.mask_head2.blocks.3.norm3.weight, bbox_head.mask_head2.blocks.3.norm3.bias, bbox_head.mask_head2.blocks.4.head_norm1.weight, bbox_head.mask_head2.blocks.4.head_norm1.bias, bbox_head.mask_head2.blocks.4.attn.q.weight, bbox_head.mask_head2.blocks.4.attn.q.bias, bbox_head.mask_head2.blocks.4.attn.k.weight, bbox_head.mask_head2.blocks.4.attn.k.bias, bbox_head.mask_head2.blocks.4.attn.v.weight, bbox_head.mask_head2.blocks.4.attn.v.bias, bbox_head.mask_head2.blocks.4.attn.proj.weight, bbox_head.mask_head2.blocks.4.attn.proj.bias, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.4.attn.linear.0.weight, bbox_head.mask_head2.blocks.4.attn.linear.0.bias, bbox_head.mask_head2.blocks.4.head_norm2.weight, bbox_head.mask_head2.blocks.4.head_norm2.bias, bbox_head.mask_head2.blocks.4.mlp.fc1.weight, bbox_head.mask_head2.blocks.4.mlp.fc1.bias, bbox_head.mask_head2.blocks.4.mlp.fc2.weight, bbox_head.mask_head2.blocks.4.mlp.fc2.bias, bbox_head.mask_head2.blocks.4.self_attention.qkv.weight, bbox_head.mask_head2.blocks.4.self_attention.qkv.bias, bbox_head.mask_head2.blocks.4.self_attention.proj.weight, bbox_head.mask_head2.blocks.4.self_attention.proj.bias, bbox_head.mask_head2.blocks.4.norm3.weight, bbox_head.mask_head2.blocks.4.norm3.bias, bbox_head.mask_head2.blocks.5.head_norm1.weight, bbox_head.mask_head2.blocks.5.head_norm1.bias, bbox_head.mask_head2.blocks.5.attn.q.weight, bbox_head.mask_head2.blocks.5.attn.q.bias, bbox_head.mask_head2.blocks.5.attn.k.weight, bbox_head.mask_head2.blocks.5.attn.k.bias, bbox_head.mask_head2.blocks.5.attn.v.weight, bbox_head.mask_head2.blocks.5.attn.v.bias, bbox_head.mask_head2.blocks.5.attn.proj.weight, bbox_head.mask_head2.blocks.5.attn.proj.bias, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.5.attn.linear.0.weight, bbox_head.mask_head2.blocks.5.attn.linear.0.bias, bbox_head.mask_head2.blocks.5.head_norm2.weight, bbox_head.mask_head2.blocks.5.head_norm2.bias, bbox_head.mask_head2.blocks.5.mlp.fc1.weight, bbox_head.mask_head2.blocks.5.mlp.fc1.bias, bbox_head.mask_head2.blocks.5.mlp.fc2.weight, bbox_head.mask_head2.blocks.5.mlp.fc2.bias, bbox_head.mask_head2.blocks.5.self_attention.qkv.weight, bbox_head.mask_head2.blocks.5.self_attention.qkv.bias, bbox_head.mask_head2.blocks.5.self_attention.proj.weight, bbox_head.mask_head2.blocks.5.self_attention.proj.bias, bbox_head.mask_head2.blocks.5.norm3.weight, bbox_head.mask_head2.blocks.5.norm3.bias, bbox_head.mask_head2.attnen.q.weight, bbox_head.mask_head2.attnen.q.bias, bbox_head.mask_head2.attnen.k.weight, bbox_head.mask_head2.attnen.k.bias, bbox_head.mask_head2.attnen.linear_l1.0.weight, bbox_head.mask_head2.attnen.linear_l1.0.bias, bbox_head.mask_head2.attnen.linear_l2.0.weight, bbox_head.mask_head2.attnen.linear_l2.0.bias, bbox_head.mask_head2.attnen.linear_l3.0.weight, bbox_head.mask_head2.attnen.linear_l3.0.bias, bbox_head.mask_head2.attnen.linear.0.weight, bbox_head.mask_head2.attnen.linear.0.bias
    
    missing keys in source state_dict: bbox_head.cls_thing_branches.0.weight, bbox_head.cls_thing_branches.0.bias, bbox_head.cls_thing_branches.1.weight, bbox_head.cls_thing_branches.1.bias, bbox_head.cls_thing_branches.2.weight, bbox_head.cls_thing_branches.2.bias, bbox_head.cls_thing_branches.3.weight, bbox_head.cls_thing_branches.3.bias, bbox_head.things_mask_head.blocks.0.head_norm1.weight, bbox_head.things_mask_head.blocks.0.head_norm1.bias, bbox_head.things_mask_head.blocks.0.attn.q.weight, bbox_head.things_mask_head.blocks.0.attn.q.bias, bbox_head.things_mask_head.blocks.0.attn.k.weight, bbox_head.things_mask_head.blocks.0.attn.k.bias, bbox_head.things_mask_head.blocks.0.attn.v.weight, bbox_head.things_mask_head.blocks.0.attn.v.bias, bbox_head.things_mask_head.blocks.0.attn.proj.weight, bbox_head.things_mask_head.blocks.0.attn.proj.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear.0.bias, bbox_head.things_mask_head.blocks.0.head_norm2.weight, bbox_head.things_mask_head.blocks.0.head_norm2.bias, bbox_head.things_mask_head.blocks.0.mlp.fc1.weight, bbox_head.things_mask_head.blocks.0.mlp.fc1.bias, bbox_head.things_mask_head.blocks.0.mlp.fc2.weight, bbox_head.things_mask_head.blocks.0.mlp.fc2.bias, bbox_head.things_mask_head.blocks.1.head_norm1.weight, bbox_head.things_mask_head.blocks.1.head_norm1.bias, bbox_head.things_mask_head.blocks.1.attn.q.weight, bbox_head.things_mask_head.blocks.1.attn.q.bias, bbox_head.things_mask_head.blocks.1.attn.k.weight, bbox_head.things_mask_head.blocks.1.attn.k.bias, bbox_head.things_mask_head.blocks.1.attn.v.weight, bbox_head.things_mask_head.blocks.1.attn.v.bias, bbox_head.things_mask_head.blocks.1.attn.proj.weight, bbox_head.things_mask_head.blocks.1.attn.proj.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear.0.bias, bbox_head.things_mask_head.blocks.1.head_norm2.weight, bbox_head.things_mask_head.blocks.1.head_norm2.bias, bbox_head.things_mask_head.blocks.1.mlp.fc1.weight, bbox_head.things_mask_head.blocks.1.mlp.fc1.bias, bbox_head.things_mask_head.blocks.1.mlp.fc2.weight, bbox_head.things_mask_head.blocks.1.mlp.fc2.bias, bbox_head.things_mask_head.blocks.2.head_norm1.weight, bbox_head.things_mask_head.blocks.2.head_norm1.bias, bbox_head.things_mask_head.blocks.2.attn.q.weight, bbox_head.things_mask_head.blocks.2.attn.q.bias, bbox_head.things_mask_head.blocks.2.attn.k.weight, bbox_head.things_mask_head.blocks.2.attn.k.bias, bbox_head.things_mask_head.blocks.2.attn.v.weight, bbox_head.things_mask_head.blocks.2.attn.v.bias, bbox_head.things_mask_head.blocks.2.attn.proj.weight, bbox_head.things_mask_head.blocks.2.attn.proj.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear.0.bias, bbox_head.things_mask_head.blocks.2.head_norm2.weight, bbox_head.things_mask_head.blocks.2.head_norm2.bias, bbox_head.things_mask_head.blocks.2.mlp.fc1.weight, bbox_head.things_mask_head.blocks.2.mlp.fc1.bias, bbox_head.things_mask_head.blocks.2.mlp.fc2.weight, bbox_head.things_mask_head.blocks.2.mlp.fc2.bias, bbox_head.things_mask_head.blocks.3.head_norm1.weight, bbox_head.things_mask_head.blocks.3.head_norm1.bias, bbox_head.things_mask_head.blocks.3.attn.q.weight, bbox_head.things_mask_head.blocks.3.attn.q.bias, bbox_head.things_mask_head.blocks.3.attn.k.weight, bbox_head.things_mask_head.blocks.3.attn.k.bias, bbox_head.things_mask_head.blocks.3.attn.v.weight, bbox_head.things_mask_head.blocks.3.attn.v.bias, bbox_head.things_mask_head.blocks.3.attn.proj.weight, bbox_head.things_mask_head.blocks.3.attn.proj.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear.0.bias, bbox_head.things_mask_head.blocks.3.head_norm2.weight, bbox_head.things_mask_head.blocks.3.head_norm2.bias, bbox_head.things_mask_head.blocks.3.mlp.fc1.weight, bbox_head.things_mask_head.blocks.3.mlp.fc1.bias, bbox_head.things_mask_head.blocks.3.mlp.fc2.weight, bbox_head.things_mask_head.blocks.3.mlp.fc2.bias, bbox_head.things_mask_head.attnen.q.weight, bbox_head.things_mask_head.attnen.q.bias, bbox_head.things_mask_head.attnen.k.weight, bbox_head.things_mask_head.attnen.k.bias, bbox_head.things_mask_head.attnen.linear_l1.0.weight, bbox_head.things_mask_head.attnen.linear_l1.0.bias, bbox_head.things_mask_head.attnen.linear_l2.0.weight, bbox_head.things_mask_head.attnen.linear_l2.0.bias, bbox_head.things_mask_head.attnen.linear_l3.0.weight, bbox_head.things_mask_head.attnen.linear_l3.0.bias, bbox_head.things_mask_head.attnen.linear.0.weight, bbox_head.things_mask_head.attnen.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm1.weight, bbox_head.stuff_mask_head.blocks.0.head_norm1.bias, bbox_head.stuff_mask_head.blocks.0.attn.q.weight, bbox_head.stuff_mask_head.blocks.0.attn.q.bias, bbox_head.stuff_mask_head.blocks.0.attn.k.weight, bbox_head.stuff_mask_head.blocks.0.attn.k.bias, bbox_head.stuff_mask_head.blocks.0.attn.v.weight, bbox_head.stuff_mask_head.blocks.0.attn.v.bias, bbox_head.stuff_mask_head.blocks.0.attn.proj.weight, bbox_head.stuff_mask_head.blocks.0.attn.proj.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm2.weight, bbox_head.stuff_mask_head.blocks.0.head_norm2.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.0.norm3.weight, bbox_head.stuff_mask_head.blocks.0.norm3.bias, bbox_head.stuff_mask_head.blocks.1.head_norm1.weight, bbox_head.stuff_mask_head.blocks.1.head_norm1.bias, bbox_head.stuff_mask_head.blocks.1.attn.q.weight, bbox_head.stuff_mask_head.blocks.1.attn.q.bias, bbox_head.stuff_mask_head.blocks.1.attn.k.weight, bbox_head.stuff_mask_head.blocks.1.attn.k.bias, bbox_head.stuff_mask_head.blocks.1.attn.v.weight, bbox_head.stuff_mask_head.blocks.1.attn.v.bias, bbox_head.stuff_mask_head.blocks.1.attn.proj.weight, bbox_head.stuff_mask_head.blocks.1.attn.proj.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.1.head_norm2.weight, bbox_head.stuff_mask_head.blocks.1.head_norm2.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.1.norm3.weight, bbox_head.stuff_mask_head.blocks.1.norm3.bias, bbox_head.stuff_mask_head.blocks.2.head_norm1.weight, bbox_head.stuff_mask_head.blocks.2.head_norm1.bias, bbox_head.stuff_mask_head.blocks.2.attn.q.weight, bbox_head.stuff_mask_head.blocks.2.attn.q.bias, bbox_head.stuff_mask_head.blocks.2.attn.k.weight, bbox_head.stuff_mask_head.blocks.2.attn.k.bias, bbox_head.stuff_mask_head.blocks.2.attn.v.weight, bbox_head.stuff_mask_head.blocks.2.attn.v.bias, bbox_head.stuff_mask_head.blocks.2.attn.proj.weight, bbox_head.stuff_mask_head.blocks.2.attn.proj.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.2.head_norm2.weight, bbox_head.stuff_mask_head.blocks.2.head_norm2.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.2.norm3.weight, bbox_head.stuff_mask_head.blocks.2.norm3.bias, bbox_head.stuff_mask_head.blocks.3.head_norm1.weight, bbox_head.stuff_mask_head.blocks.3.head_norm1.bias, bbox_head.stuff_mask_head.blocks.3.attn.q.weight, bbox_head.stuff_mask_head.blocks.3.attn.q.bias, bbox_head.stuff_mask_head.blocks.3.attn.k.weight, bbox_head.stuff_mask_head.blocks.3.attn.k.bias, bbox_head.stuff_mask_head.blocks.3.attn.v.weight, bbox_head.stuff_mask_head.blocks.3.attn.v.bias, bbox_head.stuff_mask_head.blocks.3.attn.proj.weight, bbox_head.stuff_mask_head.blocks.3.attn.proj.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.3.head_norm2.weight, bbox_head.stuff_mask_head.blocks.3.head_norm2.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.3.norm3.weight, bbox_head.stuff_mask_head.blocks.3.norm3.bias, bbox_head.stuff_mask_head.blocks.4.head_norm1.weight, bbox_head.stuff_mask_head.blocks.4.head_norm1.bias, bbox_head.stuff_mask_head.blocks.4.attn.q.weight, bbox_head.stuff_mask_head.blocks.4.attn.q.bias, bbox_head.stuff_mask_head.blocks.4.attn.k.weight, bbox_head.stuff_mask_head.blocks.4.attn.k.bias, bbox_head.stuff_mask_head.blocks.4.attn.v.weight, bbox_head.stuff_mask_head.blocks.4.attn.v.bias, bbox_head.stuff_mask_head.blocks.4.attn.proj.weight, bbox_head.stuff_mask_head.blocks.4.attn.proj.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.4.head_norm2.weight, bbox_head.stuff_mask_head.blocks.4.head_norm2.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.4.norm3.weight, bbox_head.stuff_mask_head.blocks.4.norm3.bias, bbox_head.stuff_mask_head.blocks.5.head_norm1.weight, bbox_head.stuff_mask_head.blocks.5.head_norm1.bias, bbox_head.stuff_mask_head.blocks.5.attn.q.weight, bbox_head.stuff_mask_head.blocks.5.attn.q.bias, bbox_head.stuff_mask_head.blocks.5.attn.k.weight, bbox_head.stuff_mask_head.blocks.5.attn.k.bias, bbox_head.stuff_mask_head.blocks.5.attn.v.weight, bbox_head.stuff_mask_head.blocks.5.attn.v.bias, bbox_head.stuff_mask_head.blocks.5.attn.proj.weight, bbox_head.stuff_mask_head.blocks.5.attn.proj.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.5.head_norm2.weight, bbox_head.stuff_mask_head.blocks.5.head_norm2.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.5.norm3.weight, bbox_head.stuff_mask_head.blocks.5.norm3.bias, bbox_head.stuff_mask_head.attnen.q.weight, bbox_head.stuff_mask_head.attnen.q.bias, bbox_head.stuff_mask_head.attnen.k.weight, bbox_head.stuff_mask_head.attnen.k.bias, bbox_head.stuff_mask_head.attnen.linear_l1.0.weight, bbox_head.stuff_mask_head.attnen.linear_l1.0.bias, bbox_head.stuff_mask_head.attnen.linear_l2.0.weight, bbox_head.stuff_mask_head.attnen.linear_l2.0.bias, bbox_head.stuff_mask_head.attnen.linear_l3.0.weight, bbox_head.stuff_mask_head.attnen.linear_l3.0.bias, bbox_head.stuff_mask_head.attnen.linear.0.weight, bbox_head.stuff_mask_head.attnen.linear.0.bias
    
    opened by aviadmx 3
  • ImportError Libtorch_cpu.so: undefined symbol

    ImportError Libtorch_cpu.so: undefined symbol

    Thank you for this awesome work

    Unfortunately I can't run the training because I get the following error

    ./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 1
    + CONFIG=./configs/panformer/panformer_r50_24e_coco_panoptic.py
    + GPUS=1
    + PORT=29503
    ++ dirname ./tools/dist_train.sh
    ++ dirname ./tools/dist_train.sh
    + PYTHONPATH=./tools/..:
    + python -m torch.distributed.launch --nproc_per_node=1 --master_port=29503 ./tools/train.py ./configs/panformer/panformer_r50_24e_coco_panoptic.py --launcher pytorch --deterministic
    Traceback (most recent call last):
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 183, in _run_module_as_main
        mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 109, in _get_module_details
        __import__(pkg_name)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/__init__.py", line 197, in <module>
        from torch._C import *  # noqa: F403
    ImportError: /home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so: undefined symbol: _ZNK3c1010TensorImpl23shallow_copy_and_detachERKNS_15VariableVersionEb
    

    This is my environment:

    screen screen1

    opened by EnnioEvo 0
Owner
Nanjing University, China.
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023