TensorFlow 2 implementation of the Yahoo Open-NSFW model

Overview

ci License MIT 1.0

Introduction

Detecting Not-Suitable-For-Work (NSFW) images is a high demand task in computer vision. While there are many types of NSFW images, here we focus on the pornographic images.

The Yahoo Open-NSFW model originally developed with the Caffe framework has been a favourite choice, but the work is now discontinued and Caffe is also becoming less popular. Please see the description on the Yahoo project page for the context, definitions, and model training details.

This Open-NSFW 2 project provides a TensorFlow 2 implementation of the Yahoo model, with references to its previous third-party TensorFlow 1 implementation.

Installation

Python 3.7 or above is required. Tested for 3.7, 3.8, and 3.9.

The best way to install Open-NSFW 2 with its dependencies is from PyPI:

python3 -m pip install --upgrade opennsfw2

Alternatively, to obtain the latest version from this repository:

git clone [email protected]:bhky/opennsfw2.git
cd opennsfw2
python3 -m pip install .

Usage

import numpy as np
import opennsfw2 as n2
from PIL import Image

# Load and preprocess image.
image_path = "path/to/your/image.jpg"
pil_image = Image.open(image_path)
image = n2.preprocess_image(pil_image, n2.Preprocessing.YAHOO)
# The preprocessed image is a NumPy array of shape (224, 224, 3).

# Create the model.
# By default, this call will search for the pre-trained weights file from path:
# $HOME/.opennsfw2/weights/open_nsfw_weights.h5
# If not exists, the file will be downloaded from this repository.
# The model is a `tf.keras.Model` object.
model = n2.make_open_nsfw_model()

# Make predictions.
inputs = np.expand_dims(image, axis=0)  # Add batch axis (for single image).
predictions = model.predict(inputs)

# The shape of predictions is (batch_size, 2).
# Each row gives [sfw_probability, nsfw_probability] of an input image, e.g.:
sfw_probability, nsfw_probability = predictions[0]

Alternatively, the end-to-end pipeline function can be used:

import opennsfw2 as n2

image_paths = [
    "path/to/your/image1.jpg",
    "path/to/your/image2.jpg",
    # ...
]

predictions = n2.predict(
    image_paths, batch_size=4, preprocessing=n2.Preprocessing.YAHOO
)

API

preprocess_image

Apply necessary preprocessing to the input image.

  • Parameters:
    • pil_image (PIL.Image): Input as a Pillow image.
    • preprocessing (Preprocessing enum, default Preprocessing.YAHOO): See preprocessing details.
  • Return:
    • NumPy array of shape (224, 224, 3).

Preprocessing

Enum class for preprocessing options.

  • Preprocessing.YAHOO
  • Preprocessing.SIMPLE

make_open_nsfw_model

Create an instance of the NSFW model, optionally with pre-trained weights from Yahoo.

  • Parameters:
    • input_shape (Tuple[int, int, int], default (224, 224, 3)): Input shape of the model, this should not be changed.
    • weights_path (Optional[str], default $HOME/.opennsfw/weights/open_nsfw_weights.h5): Path to the weights in HDF5 format to be loaded by the model. The weights file will be downloaded if not exists. Users can provide path if the default is not preferred. If None, no weights will be downloaded nor loaded to the model.
  • Return:
    • tf.keras.Model object.

predict

End-to-end pipeline function from input image paths to predictions.

  • Parameters:
    • image_paths (Sequence[str]): List of paths to input image files.
    • batch_size (int, default 32): Batch size to be used for model inference.
    • preprocessing: Same as that in preprocess_image.
    • weights_path: Same as that in make_open_nsfw_model.
  • Return:
    • NumPy array of shape (batch_size, 2), each row gives [sfw_probability, nsfw_probability] of an input image.

Preprocessing details

Options

This implementation provides the following preprocessing options.

  • YAHOO: The default option which was used in the original Yahoo's Caffe and the later TensorFlow 1 implementations. The key steps are:
    • Resize the input Pillow image to (256, 256).
    • Save the image as JPEG bytes and reload again to a NumPy image (this step is mysterious, but somehow it really makes a difference).
    • Crop the centre part of the NumPy image with size (224, 224).
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].
  • SIMPLE: A simpler and probably more intuitive preprocessing option is also provided, but note that the model output probabilities will be different. The key steps are:
    • Resize the input Pillow image to (224, 224).
    • Convert to a NumPy image.
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].

Comparison

Using 521 private images, the NSFW probabilities given by three different settings are compared:

  • TensorFlow 1 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with SIMPLE preprocessing.

The following figure shows the result:

NSFW probabilities comparison

The current TensorFlow 2 implementation with YAHOO preprocessing can totally reproduce the well-tested TensorFlow 1 result, with small floating point errors only.

With SIMPLE preprocessing the results are different, where the model tends to give lower probabilities.

You might also like...
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

Using Tensorflow Object Detection API to detect Waymo open dataset
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

Comments
  • ERROR WITH NO ERROR

    ERROR WITH NO ERROR

    Hi, I don't understand what happened with opennsfw2 code. My installation is OK. I install Keras and Tensorflow 2.0 with CUDA but nothing, Any idea ? I attached a screenshot. Thank you to help me 0008_2022-09-10_17_heures_18

    opened by fog88 7
  • Which NSFW Area is this AI covering?

    Which NSFW Area is this AI covering?

    Hi,

    very cool project, I am looking for an AI, which can cover on the one side nudity, but doesn't judge sexy images and also bans traumatic images, like horror and the crazy things, like NSFW 4 things, is it possible with this AI?

    nsfw-chart

    I found this image online, which is your AI covering?

    Thanks!

    opened by Flori00123 5
  • small demo website

    small demo website

    would be nice to have a small website that allows users to demo the model instead of having to run it all, such as https://maybeshewill-cv.github.io/nsfw_classification/

    opened by DankMemeGuy 1
Releases(v0.10.2)
Owner
Bosco Yung
Machine Learning Engineer, Lecturer, Astrophysicist
Bosco Yung
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023