TensorFlow 2 implementation of the Yahoo Open-NSFW model

Overview

ci License MIT 1.0

Introduction

Detecting Not-Suitable-For-Work (NSFW) images is a high demand task in computer vision. While there are many types of NSFW images, here we focus on the pornographic images.

The Yahoo Open-NSFW model originally developed with the Caffe framework has been a favourite choice, but the work is now discontinued and Caffe is also becoming less popular. Please see the description on the Yahoo project page for the context, definitions, and model training details.

This Open-NSFW 2 project provides a TensorFlow 2 implementation of the Yahoo model, with references to its previous third-party TensorFlow 1 implementation.

Installation

Python 3.7 or above is required. Tested for 3.7, 3.8, and 3.9.

The best way to install Open-NSFW 2 with its dependencies is from PyPI:

python3 -m pip install --upgrade opennsfw2

Alternatively, to obtain the latest version from this repository:

git clone [email protected]:bhky/opennsfw2.git
cd opennsfw2
python3 -m pip install .

Usage

import numpy as np
import opennsfw2 as n2
from PIL import Image

# Load and preprocess image.
image_path = "path/to/your/image.jpg"
pil_image = Image.open(image_path)
image = n2.preprocess_image(pil_image, n2.Preprocessing.YAHOO)
# The preprocessed image is a NumPy array of shape (224, 224, 3).

# Create the model.
# By default, this call will search for the pre-trained weights file from path:
# $HOME/.opennsfw2/weights/open_nsfw_weights.h5
# If not exists, the file will be downloaded from this repository.
# The model is a `tf.keras.Model` object.
model = n2.make_open_nsfw_model()

# Make predictions.
inputs = np.expand_dims(image, axis=0)  # Add batch axis (for single image).
predictions = model.predict(inputs)

# The shape of predictions is (batch_size, 2).
# Each row gives [sfw_probability, nsfw_probability] of an input image, e.g.:
sfw_probability, nsfw_probability = predictions[0]

Alternatively, the end-to-end pipeline function can be used:

import opennsfw2 as n2

image_paths = [
    "path/to/your/image1.jpg",
    "path/to/your/image2.jpg",
    # ...
]

predictions = n2.predict(
    image_paths, batch_size=4, preprocessing=n2.Preprocessing.YAHOO
)

API

preprocess_image

Apply necessary preprocessing to the input image.

  • Parameters:
    • pil_image (PIL.Image): Input as a Pillow image.
    • preprocessing (Preprocessing enum, default Preprocessing.YAHOO): See preprocessing details.
  • Return:
    • NumPy array of shape (224, 224, 3).

Preprocessing

Enum class for preprocessing options.

  • Preprocessing.YAHOO
  • Preprocessing.SIMPLE

make_open_nsfw_model

Create an instance of the NSFW model, optionally with pre-trained weights from Yahoo.

  • Parameters:
    • input_shape (Tuple[int, int, int], default (224, 224, 3)): Input shape of the model, this should not be changed.
    • weights_path (Optional[str], default $HOME/.opennsfw/weights/open_nsfw_weights.h5): Path to the weights in HDF5 format to be loaded by the model. The weights file will be downloaded if not exists. Users can provide path if the default is not preferred. If None, no weights will be downloaded nor loaded to the model.
  • Return:
    • tf.keras.Model object.

predict

End-to-end pipeline function from input image paths to predictions.

  • Parameters:
    • image_paths (Sequence[str]): List of paths to input image files.
    • batch_size (int, default 32): Batch size to be used for model inference.
    • preprocessing: Same as that in preprocess_image.
    • weights_path: Same as that in make_open_nsfw_model.
  • Return:
    • NumPy array of shape (batch_size, 2), each row gives [sfw_probability, nsfw_probability] of an input image.

Preprocessing details

Options

This implementation provides the following preprocessing options.

  • YAHOO: The default option which was used in the original Yahoo's Caffe and the later TensorFlow 1 implementations. The key steps are:
    • Resize the input Pillow image to (256, 256).
    • Save the image as JPEG bytes and reload again to a NumPy image (this step is mysterious, but somehow it really makes a difference).
    • Crop the centre part of the NumPy image with size (224, 224).
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].
  • SIMPLE: A simpler and probably more intuitive preprocessing option is also provided, but note that the model output probabilities will be different. The key steps are:
    • Resize the input Pillow image to (224, 224).
    • Convert to a NumPy image.
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].

Comparison

Using 521 private images, the NSFW probabilities given by three different settings are compared:

  • TensorFlow 1 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with SIMPLE preprocessing.

The following figure shows the result:

NSFW probabilities comparison

The current TensorFlow 2 implementation with YAHOO preprocessing can totally reproduce the well-tested TensorFlow 1 result, with small floating point errors only.

With SIMPLE preprocessing the results are different, where the model tends to give lower probabilities.

You might also like...
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

Using Tensorflow Object Detection API to detect Waymo open dataset
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

Comments
  • ERROR WITH NO ERROR

    ERROR WITH NO ERROR

    Hi, I don't understand what happened with opennsfw2 code. My installation is OK. I install Keras and Tensorflow 2.0 with CUDA but nothing, Any idea ? I attached a screenshot. Thank you to help me 0008_2022-09-10_17_heures_18

    opened by fog88 7
  • Which NSFW Area is this AI covering?

    Which NSFW Area is this AI covering?

    Hi,

    very cool project, I am looking for an AI, which can cover on the one side nudity, but doesn't judge sexy images and also bans traumatic images, like horror and the crazy things, like NSFW 4 things, is it possible with this AI?

    nsfw-chart

    I found this image online, which is your AI covering?

    Thanks!

    opened by Flori00123 5
  • small demo website

    small demo website

    would be nice to have a small website that allows users to demo the model instead of having to run it all, such as https://maybeshewill-cv.github.io/nsfw_classification/

    opened by DankMemeGuy 1
Releases(v0.10.2)
Owner
Bosco Yung
Machine Learning Engineer, Lecturer, Astrophysicist
Bosco Yung
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022