The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

Overview

CircleCI Github Actions Codecov Documentation Status Pypi Version Black Python Versions DOI

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory.

Additionally, contributions at the algorithm level are available in the package mlresearch.

Installation

A Python distribution of version 3.8 or 3.9 is required to run this project. Due to the computational limitations of the free tiers in CI/CD platforms, currently we cannot ensure compatibility with earlier Python versions.

ML-Research requires:

  • numpy (>= 1.14.6)
  • pandas (>= 1.3.5)
  • sklearn (>= 1.0.0)
  • imblearn (>= 0.8.0)
  • rich (>= 10.16.1)
  • matplotlib (>= 2.2.3)
  • seaborn (>= 0.9.0)
  • rlearn (>= 0.2.1)
  • pytorch (>= 1.10.1)
  • torchvision (>= 0.11.2)
  • pytorch_lightning (>= 1.5.8)

User Installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip :

pip install -U ml-research

The documentation includes more detailed installation instructions.

Installing from source

The following commands should allow you to setup the development version of the project with minimal effort:

# Clone the project.
git clone https://github.com/joaopfonseca/ml-research.git
cd ml-research

# Create and activate an environment 
make environment 
conda activate mlresearch # Adapt this line accordingly if you're not running conda

# Install project requirements and the research package
pip install .[tests,docs]

Citing ML-Research

If you use ML-Research in a scientific publication, we would appreciate citations to the following paper:

@article{Fonseca2021,
  doi = {10.3390/RS13132619},
  url = {https://doi.org/10.3390/RS13132619},
  keywords = {SMOTE,active learning,artificial data generation,land use/land cover classification,oversampling},
  year = {2021},
  month = {jul},
  publisher = {Multidisciplinary Digital Publishing Institute},
  volume = {13},
  pages = {2619},
  author = {Fonseca, Joao and Douzas, Georgios and Bacao, Fernando},
  title = {{Increasing the Effectiveness of Active Learning: Introducing Artificial Data Generation in Active Learning for Land Use/Land Cover Classification}},
  journal = {Remote Sensing}
}
You might also like...
A collection of 100 Deep Learning images and visualizations
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Easily pull telemetry data and create beautiful visualizations for analysis.
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximation), to creating novel active learning strategies.

Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

Memoized coduals - Shows that it is possible to implement reverse mode autodiff using a variation on the dual numbers called the codual numbers This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Comments
  • Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Applicable to both BYOL and SimSiam: Some hyperparameters might need to be added. Some are hard-coded to the default values.

    Taken from the BYOL paper: Screenshot from 2022-03-18 17-54-43

    opened by joaopfonseca 1
  • Remove computer vision models, augmentations and datasets

    Remove computer vision models, augmentations and datasets

    They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.
    wontfix 
    opened by joaopfonseca 0
  • Host all raw data from datasets submodule elsewhere

    Host all raw data from datasets submodule elsewhere

    With Python 3.11, downloading some datasets returns an SSL error (when unsafe legacy renegotiation disabled). It happens when the server doesn't support "RFC 5746 secure renegotiation" and the client is using OpenSSL 3, which enforces that standard by default (source).

    Hosting the raw data elsewhere should fix this issue.

    bug 
    opened by joaopfonseca 0
  • Review and add examples to documentation

    Review and add examples to documentation

    The readthedocs page is getting a bit outdated:

    • [x] Add support for Python 3.10
    • [ ] Add support for Python 3.11
    • [ ] Check for missing, deleted or renamed functions and objects
    • [ ] Review content as a whole
    • [ ] Add examples to documentation
    • [ ] Add dependency groups to documentation
    • [ ] README contains dependencies that will no longer be used
    documentation 
    opened by joaopfonseca 0
Releases(v0.4a2)
  • v0.4a2(Jan 2, 2023)

    NOTE: This pre-release contains implementations of algorithms for Self-supervised learning (BYOL and SimSiam). This release also contains objects to download image data from Pytorch and general definitions for image augmentations. They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.

    Full Changelog: https://github.com/joaopfonseca/ml-research/compare/v0.4a1...v0.4a2

    Source code(tar.gz)
    Source code(zip)
  • v0.4a1(Apr 14, 2022)

  • v0.3.4(Feb 14, 2022)

  • v0.3.3(Feb 14, 2022)

  • v0.3.2(Feb 14, 2022)

  • v0.3.1(Feb 14, 2022)

  • v0.3.0(Feb 14, 2022)

  • v0.2.1(Feb 14, 2022)

  • v0.2.0(Feb 14, 2022)

  • 0.1.0(Feb 14, 2022)

Owner
João Fonseca
PhD student | Researcher | Invited lecturer @ NOVA Information Management School
João Fonseca
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022