MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

Overview

MoViNet-pytorch

Open In Colab Paper

Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition.
Authors: Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, Boqing Gong (Google Research)
[Authors' Implementation]

Stream Buffer

stream buffer

Clean stream buffer

It is required to clean the buffer after all the clips of the same video have been processed.

model.clean_activation_buffers()

Usage

Open In Colab
Click on "Open in Colab" to open an example of training on HMDB-51

installation

pip install git+https://github.com/Atze00/MoViNet-pytorch.git

How to build a model

Use causal = True to use the model with stream buffer, causal = False will use standard convolutions

from movinets import MoViNet
from movinets.config import _C

MoViNetA0 = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
MoViNetA1 = MoViNet(_C.MODEL.MoViNetA1, causal = True, pretrained = True )
...
Load weights

Use pretrained = True to use the model with pretrained weights

    """
    If pretrained is True:
        num_classes is set to 600,
        conv_type is set to "3d" if causal is False, "2plus1d" if causal is True
        tf_like is set to True
    """
model = MoViNet(_C.MODEL.MoViNetA0, causal = True, pretrained = True )
model = MoViNet(_C.MODEL.MoViNetA0, causal = False, pretrained = True )

Training loop examples

Training loop with stream buffer

def train_iter(model, optimz, data_load, n_clips = 5, n_clip_frames=8):
    """
    In causal mode with stream buffer a single video is fed to the network
    using subclips of lenght n_clip_frames. 
    n_clips*n_clip_frames should be equal to the total number of frames presents
    in the video.
    
    n_clips : number of clips that are used
    n_clip_frames : number of frame contained in each clip
    """
    
    #clean the buffer of activations
    model.clean_activation_buffers()
    optimz.zero_grad()
    for i, data, target in enumerate(data_load):
        #backward pass for each clip
        for j in range(n_clips):
          out = F.log_softmax(model(data[:,:,(n_clip_frames)*(j):(n_clip_frames)*(j+1)]), dim=1)
          loss = F.nll_loss(out, target)/n_clips
          loss.backward()
        optimz.step()
        optimz.zero_grad()
        
        #clean the buffer of activations
        model.clean_activation_buffers()

Training loop with standard convolutions

def train_iter(model, optimz, data_load):

    optimz.zero_grad()
    for i, (data,_ , target) in enumerate(data_load):
        out = F.log_softmax(model(data), dim=1)
        loss = F.nll_loss(out, target)
        loss.backward()
        optimz.step()
        optimz.zero_grad()

Pretrained models

Weights

The weights are loaded from the tensorflow models released by the authors, trained on kinetics.

Base Models

Base models implement standard 3D convolutions without stream buffers.

Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape
MoViNet-A0-Base 72.28 90.92 50 x 172 x 172
MoViNet-A1-Base 76.69 93.40 50 x 172 x 172
MoViNet-A2-Base 78.62 94.17 50 x 224 x 224
MoViNet-A3-Base 81.79 95.67 120 x 256 x 256
MoViNet-A4-Base 83.48 96.16 80 x 290 x 290
MoViNet-A5-Base 84.27 96.39 120 x 320 x 320
Model Name Top-1 Accuracy* Top-5 Accuracy* Input Shape**
MoViNet-A0-Stream 72.05 90.63 50 x 172 x 172
MoViNet-A1-Stream 76.45 93.25 50 x 172 x 172
MoViNet-A2-Stream 78.40 94.05 50 x 224 x 224

**In streaming mode, the number of frames correspond to the total accumulated duration of the 10-second clip.

*Accuracy reported on the official repository for the dataset kinetics 600, It has not been tested by me. It should be the same since the tf models and the reimplemented pytorch models output the same results [Test].

I currently haven't tested the speed of the streaming models, feel free to test and contribute.

Status

Currently are available the pretrained models for the following architectures:

  • MoViNetA1-BASE
  • MoViNetA1-STREAM
  • MoViNetA2-BASE
  • MoViNetA2-STREAM
  • MoViNetA3-BASE
  • MoViNetA3-STREAM
  • MoViNetA4-BASE
  • MoViNetA4-STREAM
  • MoViNetA5-BASE
  • MoViNetA5-STREAM

I currently have no plans to include streaming version of A3,A4,A5. Those models are too slow for most mobile applications.

Testing

I recommend to create a new environment for testing and run the following command to install all the required packages:
pip install -r tests/test_requirements.txt

Citations

@article{kondratyuk2021movinets,
  title={MoViNets: Mobile Video Networks for Efficient Video Recognition},
  author={Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Matthew Brown, and Boqing Gong},
  journal={arXiv preprint arXiv:2103.11511},
  year={2021}
}
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022