A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview

Overview

This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My motivation to initiate this project is two fold. I always felt the urge to be able to play piano since my childhood but huge instrumental costs barred my way. This is true for most of the musical instruments which are often very costly. I thought of putting my recently acquired computer vision skills to practice and make virtual music instruments through this project. Currently, this project only supports piano but I will add more modules for other instruments soon. While this project is very basic, more contributions are always welcomed to further improve it.

Working

This project employs use of many other libraries apart from OpenCV such as pygame, mediapipe etc to develop it. In the first step, we use mediapipe library to detect 21 finger landmarks for each hand. MediaPipe offers open source cross-platform, customizable ML solutions for object detection, face detection, human pose detection/tracking etc, and is one of the most widely used libraries for hand motion tracking. Once all finger landmarks are obtained, we use a simple algorithm to detect a particular key press. If key press is within the boundaries of virtual piano, we add that piano key music to a list and start playing it. The algorithm is capable of mixing up several key notes simultaneously in case of multiple key presses. Interesting, isn't it? So let's dive in and get it started on your own PC!

Getting Started

  • As with any other project, we will first install all the dependencies required for building this project which are listed down in the requirements.txt file. To install, use `pip3 install' command as shown below:

pip3 install -r requirements.txt

Note that python 2 users should use pip instead of pip3. If any dependencies couldn't be installed on your system due to compatibility issues, please search for other compatible versions!

  • Once dependencies are installed, it is time to clone the repository using git clone and change to ~/scripts directory. Use the following command.

git clone https://github.com/AbhinavGupta121/Virtual-Piano-using-Open-CV.git

cd Virtual-Piano-using-Open-CV/scripts/

  • Now it is time to install 88 piano key sounds. You can simply download them manually using this (link) or by using command line itself. To use command line, run this command under ~/scripts folder.

wget https://archive.org/download/25405-tedagame-88-piano-keys-long-reverb/25405__tedagame__88-piano-keys-long-reverb.zip

Now simply extract the zip file and you are good to go!

  • In the next step, we shall configure our android phone camera and process its images locally on our laptop. To do that, first install the application IP Webcam on your android phone. Next, make sure your phone and laptop are connected to the same network. Open your IP Webcam application, click “Start Server” (usually found at the bottom). This will open a camera on your Phone. A URL is being displayed on the Phone screen (Example- https://192.168.22.176:8080/), type the same URL on your PC browser, and under “Video renderer” Section, click on “Javascript”. You should be able to see the phone's camera. you can optionally chose to switch the cameras if you like. Make sure the camera is facing you. To know more you can visit this link .

  • That's pretty much it! Now open up your terminal and run the Virtual_Piano.py using this command.

python3 Virtual_Piano.py.

A window will pop up soon (<30seconds) displaying your phone's camera view and a virtual piano. Move around your hands and imitate key pressing to hear melodic piano sounds! Congratulations!!

Results

Hand Landmark Detection

Finger landmark Detection

Real-time virtual piano (piano sounds not audible in video)

Piano_video.audioless.mp4

FPS

Nearly 4fps was achieved with an image resolution of (640,480) on a Intel® Core™ i5-7200U CPU @ 2.50GHz × 4. To ease up computations, we can reduce image resolution or optimize within code itself. Network latency can be further minimized by using laptop webcam directly in which case >10 fps was achieved!

Owner
Abhinav Gupta
Abhinav Gupta
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022