A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview

Overview

This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My motivation to initiate this project is two fold. I always felt the urge to be able to play piano since my childhood but huge instrumental costs barred my way. This is true for most of the musical instruments which are often very costly. I thought of putting my recently acquired computer vision skills to practice and make virtual music instruments through this project. Currently, this project only supports piano but I will add more modules for other instruments soon. While this project is very basic, more contributions are always welcomed to further improve it.

Working

This project employs use of many other libraries apart from OpenCV such as pygame, mediapipe etc to develop it. In the first step, we use mediapipe library to detect 21 finger landmarks for each hand. MediaPipe offers open source cross-platform, customizable ML solutions for object detection, face detection, human pose detection/tracking etc, and is one of the most widely used libraries for hand motion tracking. Once all finger landmarks are obtained, we use a simple algorithm to detect a particular key press. If key press is within the boundaries of virtual piano, we add that piano key music to a list and start playing it. The algorithm is capable of mixing up several key notes simultaneously in case of multiple key presses. Interesting, isn't it? So let's dive in and get it started on your own PC!

Getting Started

  • As with any other project, we will first install all the dependencies required for building this project which are listed down in the requirements.txt file. To install, use `pip3 install' command as shown below:

pip3 install -r requirements.txt

Note that python 2 users should use pip instead of pip3. If any dependencies couldn't be installed on your system due to compatibility issues, please search for other compatible versions!

  • Once dependencies are installed, it is time to clone the repository using git clone and change to ~/scripts directory. Use the following command.

git clone https://github.com/AbhinavGupta121/Virtual-Piano-using-Open-CV.git

cd Virtual-Piano-using-Open-CV/scripts/

  • Now it is time to install 88 piano key sounds. You can simply download them manually using this (link) or by using command line itself. To use command line, run this command under ~/scripts folder.

wget https://archive.org/download/25405-tedagame-88-piano-keys-long-reverb/25405__tedagame__88-piano-keys-long-reverb.zip

Now simply extract the zip file and you are good to go!

  • In the next step, we shall configure our android phone camera and process its images locally on our laptop. To do that, first install the application IP Webcam on your android phone. Next, make sure your phone and laptop are connected to the same network. Open your IP Webcam application, click “Start Server” (usually found at the bottom). This will open a camera on your Phone. A URL is being displayed on the Phone screen (Example- https://192.168.22.176:8080/), type the same URL on your PC browser, and under “Video renderer” Section, click on “Javascript”. You should be able to see the phone's camera. you can optionally chose to switch the cameras if you like. Make sure the camera is facing you. To know more you can visit this link .

  • That's pretty much it! Now open up your terminal and run the Virtual_Piano.py using this command.

python3 Virtual_Piano.py.

A window will pop up soon (<30seconds) displaying your phone's camera view and a virtual piano. Move around your hands and imitate key pressing to hear melodic piano sounds! Congratulations!!

Results

Hand Landmark Detection

Finger landmark Detection

Real-time virtual piano (piano sounds not audible in video)

Piano_video.audioless.mp4

FPS

Nearly 4fps was achieved with an image resolution of (640,480) on a Intel® Core™ i5-7200U CPU @ 2.50GHz × 4. To ease up computations, we can reduce image resolution or optimize within code itself. Network latency can be further minimized by using laptop webcam directly in which case >10 fps was achieved!

Owner
Abhinav Gupta
Abhinav Gupta
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022