Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Overview

Pose-Transfer

Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here.

Video generation with a single image as input. More details can be found in the supplementary materials in our paper.

News

  • We have released a new branch PATN_Fine. We introduce a segment-based skip-connection and a novel segment-based style loss, achieving even better results on DeepFashion.
  • Video demo is available now. We further improve the performance of our model by introducing a segment-based skip-connection. We will release the code soon. Refer to our supplementary materials for more details.
  • Codes for pytorch 1.0 is available now under the branch pytorch_v1.0. The same results on both datasets can be reproduced with the pretrained model.

Notes:

In pytorch 1.0, running_mean and running_var are not saved for the Instance Normalization layer by default. To reproduce our result in the paper, launch python tool/rm_insnorm_running_vars.py to remove corresponding keys in the pretrained model. (Only for the DeepFashion dataset.)

This is Pytorch implementation for pose transfer on both Market1501 and DeepFashion dataset. The code is written by Tengteng Huang and Zhen Zhu.

Requirement

  • pytorch(0.3.1)
  • torchvision(0.2.0)
  • numpy
  • scipy
  • scikit-image
  • pillow
  • pandas
  • tqdm
  • dominate

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/tengteng95/Pose-Transfer.git
cd Pose-Transfer

Data Preperation

We provide our dataset split files and extracted keypoints files for convience.

Market1501

  • Download the Market-1501 dataset from here. Rename bounding_box_train and bounding_box_test to train and test, and put them under the market_data directory.
  • Download train/test splits and train/test key points annotations from Google Drive or Baidu Disk, including market-pairs-train.csv, market-pairs-test.csv, market-annotation-train.csv, market-annotation-train.csv. Put these four files under the market_data directory.
  • Generate the pose heatmaps. Launch
python tool/generate_pose_map_market.py

DeepFashion

Note: In our settings, we crop the images of DeepFashion into the resolution of 176x256 in a center-crop manner.

python tool/generate_fashion_datasets.py
  • Download train/test pairs and train/test key points annotations from Google Drive or Baidu Disk, including fasion-resize-pairs-train.csv, fasion-resize-pairs-test.csv, fasion-resize-annotation-train.csv, fasion-resize-annotation-train.csv. Put these four files under the fashion_data directory.
  • Generate the pose heatmaps. Launch
python tool/generate_pose_map_fashion.py

Notes:

Optionally, you can also generate these files by yourself.

  1. Keypoints files

We use OpenPose to generate keypoints.

  • Download pose estimator from Google Drive or Baidu Disk. Put it under the root folder Pose-Transfer.
  • Change the paths input_folder and output_path in tool/compute_coordinates.py. And then launch
python2 compute_coordinates.py
  1. Dataset split files
python2 tool/create_pairs_dataset.py

Train a model

Market-1501

python train.py --dataroot ./market_data/ --name market_PATN --model PATN --lambda_GAN 5 --lambda_A 10  --lambda_B 10 --dataset_mode keypoint --no_lsgan --n_layers 3 --norm batch --batchSize 32 --resize_or_crop no --gpu_ids 0 --BP_input_nc 18 --no_flip --which_model_netG PATN --niter 500 --niter_decay 200 --checkpoints_dir ./checkpoints --pairLst ./market_data/market-pairs-train.csv --L1_type l1_plus_perL1 --n_layers_D 3 --with_D_PP 1 --with_D_PB 1  --display_id 0

DeepFashion

python train.py --dataroot ./fashion_data/ --name fashion_PATN --model PATN --lambda_GAN 5 --lambda_A 1 --lambda_B 1 --dataset_mode keypoint --n_layers 3 --norm instance --batchSize 7 --pool_size 0 --resize_or_crop no --gpu_ids 0 --BP_input_nc 18 --no_flip --which_model_netG PATN --niter 500 --niter_decay 200 --checkpoints_dir ./checkpoints --pairLst ./fashion_data/fasion-resize-pairs-train.csv --L1_type l1_plus_perL1 --n_layers_D 3 --with_D_PP 1 --with_D_PB 1  --display_id 0

Test the model

Market1501

python test.py --dataroot ./market_data/ --name market_PATN --model PATN --phase test --dataset_mode keypoint --norm batch --batchSize 1 --resize_or_crop no --gpu_ids 2 --BP_input_nc 18 --no_flip --which_model_netG PATN --checkpoints_dir ./checkpoints --pairLst ./market_data/market-pairs-test.csv --which_epoch latest --results_dir ./results --display_id 0

DeepFashion

python test.py --dataroot ./fashion_data/ --name fashion_PATN --model PATN --phase test --dataset_mode keypoint --norm instance --batchSize 1 --resize_or_crop no --gpu_ids 0 --BP_input_nc 18 --no_flip --which_model_netG PATN --checkpoints_dir ./checkpoints --pairLst ./fashion_data/fasion-resize-pairs-test.csv --which_epoch latest --results_dir ./results --display_id 0

Evaluation

We adopt SSIM, mask-SSIM, IS, mask-IS, DS, and PCKh for evaluation of Market-1501. SSIM, IS, DS, PCKh for DeepFashion.

1) SSIM and mask-SSIM, IS and mask-IS, mask-SSIM

For evaluation, Tensorflow 1.4.1(python3) is required. Please see requirements_tf.txt for details.

For Market-1501:

python tool/getMetrics_market.py

For DeepFashion:

python tool/getMetrics_market.py

If you still have problems for evaluation, please consider using docker.

docker run -v <Pose-Transfer path>:/tmp -w /tmp --runtime=nvidia -it --rm tensorflow/tensorflow:1.4.1-gpu-py3 bash
# now in docker:
$ pip install scikit-image tqdm 
$ python tool/getMetrics_market.py

Refer to this Issue.

2) DS Score

Download pretrained on VOC 300x300 model and install propper caffe version SSD. Put it in the ssd_score forlder.

For Market-1501:

python compute_ssd_score_market.py --input_dir path/to/generated/images

For DeepFashion:

python compute_ssd_score_fashion.py --input_dir path/to/generated/images

3) PCKh

  • First, run tool/crop_market.py or tool/crop_fashion.py.
  • Download pose estimator from Google Drive or Baidu Disk. Put it under the root folder Pose-Transfer.
  • Change the paths input_folder and output_path in tool/compute_coordinates.py. And then launch
python2 compute_coordinates.py
  • run tool/calPCKH_fashion.py or tool/calPCKH_market.py

Pre-trained model

Our pre-trained model can be downloaded Google Drive or Baidu Disk.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{zhu2019progressive,
  title={Progressive Pose Attention Transfer for Person Image Generation},
  author={Zhu, Zhen and Huang, Tengteng and Shi, Baoguang and Yu, Miao and Wang, Bofei and Bai, Xiang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={2347--2356},
  year={2019}
}

Acknowledgments

Our code is based on the popular pytorch-CycleGAN-and-pix2pix.

Owner
Tengteng Huang
Tengteng Huang
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022