This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Overview

Coresets via Bilevel Optimization

This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" https://arxiv.org/pdf/2006.03875.pdf.

This repository also contains the implementation of the selection via Nyström proxy used for selecting batches in "Semi-supervised Batch Active Learning via Bilevel Optimization" https://arxiv.org/pdf/2010.09654. Selection via the Nyström proxy supports data augmentation, it is faster for larger coresets and hence supersedes the representer proxy in data summarization scenarios.

Overview

To get started with the library, check out demo.ipynb Open In Colab that shows how to build coresets for a toy regression problem and for MNIST classification. The following snippet outlines the general usage:

import bilevel_coreset
import loss_utils
import numpy as np

x, y = load_data()

# define proxy kernel function
linear_kernel_fn = lambda x1, x2: np.dot(x1, x2.T)

coreset_size = 10

coreset_constructor = bilevel_coreset.BilevelCoreset(outer_loss_fn=loss_utils.cross_entropy,
                                                    inner_loss_fn=loss_utils.cross_entropy,
                                                    out_dim=y.shape[1])
coreset_inds, coreset_weights = coreset_constructor.build_with_representer_proxy_batch(x, y, 
                                                    coreset_size, linear_kernel_fn, inner_reg=1e-3)
x_coreset, y_coreset = x[coreset_inds], y[coreset_inds]

Note: if you are planning to use the library on your problem, the most important hyperparameter to tune is inner_reg, the regularizer of the inner objective in the representer proxy - try the grid [10-2, 10-3, 10-4, 10-5, 10-6].

Requirements

Python 3 is required. To install the required dependencies, run:

pip install -r requirements.txt

If you are planning to use the NTK proxy, consider installing the GPU version of JAX: instructions here. If you would like to run the experiments, add the project root to your PYTHONPATH env variable.

Data Summarization

Change dir to data_summarization. For running and plotting the MNIST summarization experiment, adjust the globals in runner.py to your setup and run:

python runner.py --exp cnn_mnist
python plotter.py --exp cnn_mnist

Similarly, for the CIFAR-10 summary for a version of ResNet-18 run:

python runner.py --exp resnet_cifar
python plotter.py --exp resnet_cifar

For running the Kernel Ridge Regression experiment, you first need to generate the kernel with python generate_cntk.py. Note: this implementation differs in the kernel choice in generate_kernel() from the paper. For details on the original kernel, please refer to the paper. Once you generated the kernel, generate the results by:

python runner.py --exp krr_cifar
python plotter.py --exp krr_cifar 

Continual Learning and Streaming

We showcase the usage our coreset construction in continual learning and streaming with memory replay. The buffer regularizer beta is tuned individually for each method. We provide the best betas from [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] for each method in cl_results/ and streaming_results/.

Running the Experiments

Change dir to cl_streaming. After this, you can run individual experiments, e.g.:

python cl.py --buffer_size 100 --dataset splitmnist --seed 0 --method coreset --beta 100.0

You can also run the continual learning and streaming experiments with grid search over beta on datasets derived from MNIST by adjusting the globals in runner.py to your setup and running:

python runner.py --exp cl
python runner.py --exp streaming
python runner.py --exp imbalanced_streaming

The table of result can be displayed by running python process_results.py with the corresponding --exp argument. For example, python process_results.py --exp imbalanced_streaming produces:

Method \ Dataset splitmnistimbalanced
reservoir 80.60 +- 4.36
cbrs 89.71 +- 1.31
coreset 92.30 +- 0.23

The experiments derived from CIFAR-10 can be similarly run by:

python cifar_runner.py --exp cl
python process_results --exp splitcifar
python cifar_runner.py --exp imbalanced_streaming
python process_results --exp imbalanced_streaming_cifar

Selection via the Nyström proxy

The Nyström proxy was proposed to support data augmentations. It is also faster for larger coresets than the representer proxy. An example of running the selection on CIFAR-10 can be found in batch_active_learning/nystrom_example.py.

Citation

If you use the code in a publication, please cite the paper:

@article{borsos2020coresets,
      title={Coresets via Bilevel Optimization for Continual Learning and Streaming}, 
      author={Zalán Borsos and Mojmír Mutný and Andreas Krause},
      year={2020},
      journal={arXiv preprint arXiv:2006.03875}
}
Owner
Zalán Borsos
PhD student at ETH Zurich
Zalán Borsos
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023