PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Related tags

Deep LearningGMFN
Overview

Gated Multiple Feedback Network for Image Super-Resolution

This repository contains the PyTorch implementation for the proposed GMFN [arXiv].

The framework of our proposed GMFN. The colored arrows among different time steps denote the multiple feedback connections. The high-level information carried by them helps low-level features become more representative.

Demo

Clone SRFBN as the backbone and satisfy its requirements.

Test

  1. Copy ./networks/gmfn_arch.py into SRFBN_CVPR19/networks/

  2. Download the pre-trained models from Google driver or Baidu Netdisk, unzip and place them into SRFBN_CVPR19/models.

  3. Copy ./options/test/ to SRFBN_CVPR19/options/test/.

  4. Run commands cd SRFBN_CVPR19 and one of followings for evaluation on Set5:

python test.py -opt options/test/test_GMFN_x2.json
python test.py -opt options/test/test_GMFN_x3.json
python test.py -opt options/test/test_GMFN_x4.json
  1. Finally, PSNR/SSIM values for Set5 are shown on your screen, you can find the reconstruction images in ./results.

To test GMFN on other standard SR benchmarks or your own images, please refer to the instruction in SRFBN.

Train

  1. Prepare the training set according to this (1-3).
  2. Modify ./options/train/train_GMFN.json by following the instructions in ./options/train/README.md.
  3. Run commands:
cd SRFBN_CVPR19
python train.py -opt options/train/train_GNFN.json
  1. You can monitor the training process in ./experiments.

  2. Finally, you can follow the test pipeline to evaluate the model trained by yourself.

Performance

Quantitative Results

Quantitative evaluation under scale factors x2, x3 and x4. The best performance is shown in bold and the second best performance is underlined.

More Qualitative Results (x4)

Acknowledgment

If you find our work useful in your research or publications, please consider citing:

@inproceedings{li2019gmfn,
    author = {Li, Qilei and Li, Zhen and Lu, Lu and Jeon, Gwanggil and Liu, Kai and Yang, Xiaomin},
    title = {Gated Multiple Feedback Network for Image Super-Resolution},
    booktitle = {The British Machine Vision Conference (BMVC)},
    year = {2019}
}

@inproceedings{li2019srfbn,
    author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil and Wu, Wei},
    title = {Feedback Network for Image Super-Resolution},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year= {2019}
}
You might also like...
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

Pytorch implementation for  our ICCV 2021 paper
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

This is the official pytorch implementation for our ICCV 2021 paper
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation for our NeurIPS 2021 Spotlight paper
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Comments
  • Approximately how many epoches will reach the results in the paper (4x SR result)

    Approximately how many epoches will reach the results in the paper (4x SR result)

    Hi, liqilei After I have run about 700 epoches, the reult on val set is 32.41(highest result). I want to know if my training process seems to be problematic? How long did you reach 32.47 of SRFBN when you were training? How long does it take to reach 32.70? Thank you.

    opened by Senwang98 7
  • train error size not match

    train error size not match

    CUDA_VISIBLE_DEVICES=0 python train.py -opt options/train/train_GMFN.json I use celeba dataset train

    ===> Training Epoch: [1/1000]... Learning Rate: 0.000200 Epoch: [1/1000]: 0%| | 0/251718 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 131, in main() File "train.py", line 69, in main iter_loss = solver.train_step() File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in train_step loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/module.py", line 477, in call result = self.forward(*input, **kwargs) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/loss.py", line 87, in forward return F.l1_loss(input, target, reduction=self.reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1702, in l1_loss input, target, reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1674, in _pointwise_loss return lambd_optimized(input, target, reduction) RuntimeError: input and target shapes do not match: input [16 x 3 x 192 x 192], target [16 x 3 x 48 x 48] at /pytorch/aten/src/THCUNN/generic/AbsCriterion.cu:12

    opened by yja1 3
  • Not an Issue

    Not an Issue

    Hey @Paper99,

    Thanks for sharing your code! I wonder if it is possible to help with visualizing featuer-maps as you did in your paper figure 4.

    Thanks

    opened by Auth0rM0rgan 1
  • My training result with scale = 2

    My training result with scale = 2

    Hi, After I have trained the DIV2k, I get the final result(use best_ckp.pth to test):

    set5:38.16/0.9610
    set14:33.91/0.9203
    urban100:32.81/0.9349
    B100:32.30/0.9011
    manga109:39.01/0.9776
    

    It seems much lower than that in your paper.

    opened by Senwang98 6
Owner
Qilei Li
Qilei Li
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021