Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

Overview

TRAnsformer Routing Networks (TRAR)

This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering". It currently includes the code for training TRAR on VQA2.0 and CLEVR dataset. Our TRAR model for REC task is coming soon.

Updates

  • (2021/10/10) Release our TRAR-VQA project.
  • (2021/08/31) Release our pretrained CLEVR TRAR model on train split: TRAR CLEVR Pretrained Models.
  • (2021/08/18) Release our pretrained TRAR model on train+val split and train+val+vg split: VQA-v2 TRAR Pretrained Models
  • (2021/08/16) Release our train2014, val2014 and test2015 data. Please check our dataset setup page DATA.md for more details.
  • (2021/08/15) Release our pretrained weight on train split. Please check our model page MODEL.md for more details.
  • (2021/08/13) The project page for TRAR is avaliable.

Introduction

TRAR vs Standard Transformer

TRAR Overall

Table of Contents

  1. Installation
  2. Dataset setup
  3. Config Introduction
  4. Training
  5. Validation and Testing
  6. Models

Installation

  • Clone this repo
git clone https://github.com/rentainhe/TRAR-VQA.git
cd TRAR-VQA
  • Create a conda virtual environment and activate it
conda create -n trar python=3.7 -y
conda activate trar
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install Spacy and initialize the GloVe as follows:
pip install -r requirements.txt
wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Dataset setup

see DATA.md

Config Introduction

In trar.yml config we have these specific settings for TRAR model

ORDERS: [0, 1, 2, 3]
IMG_SCALE: 8 
ROUTING: 'hard' # {'soft', 'hard'}
POOLING: 'attention' # {'attention', 'avg', 'fc'}
TAU_POLICY: 1 # {0: 'SLOW', 1: 'FAST', 2: 'FINETUNE'}
TAU_MAX: 10
TAU_MIN: 0.1
BINARIZE: False
  • ORDERS=list, to set the local attention window size for routing.0 for global attention.
  • IMG_SCALE=int, which should be equal to the image feature size used for training. You should set IMG_SCALE: 16 for 16 × 16 training features.
  • ROUTING={'hard', 'soft'}, to set the Routing Block Type in TRAR model.
  • POOLING={'attention', 'avg', 'fc}, to set the Downsample Strategy used in Routing Block.
  • TAU_POLICY={0, 1, 2}, to set the temperature schedule in training TRAR when using ROUTING: 'hard'.
  • TAU_MAX=float, to set the maximum temperature in training.
  • TAU_MIN=float, to set the minimum temperature in training.
  • BINARIZE=bool, binarize the predicted alphas (alphas: the prob of choosing one path), which means during test time, we only keep the maximum alpha and set others to zero. If BINARIZE=False, it will keep all of the alphas and get a weight sum of different routing predict result by alphas. It won't influence the training time, just a small difference during test time.

Note that please set BINARIZE=False when ROUTING='soft', it's no need to binarize the path prob in soft routing block.

TAU_POLICY visualization

For MAX_EPOCH=13 with WARMUP_EPOCH=3 we have the following policy strategy:

Training

Train model on VQA-v2 with default hyperparameters:

python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar'

and the training log will be seved to:

results/log/log_run_
   
    .txt

   

Args:

  • --DATASET={'vqa', 'clevr'} to choose the task for training
  • --GPU=str, e.g. --GPU='2' to train model on specific GPU device.
  • --SPLIT={'train', 'train+val', train+val+vg'}, which combines different training datasets. The default training split is train.
  • --MAX_EPOCH=int to set the total training epoch number.

Resume Training

Resume training from specific saved model weights

python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar' --RESUME=True --CKPT_V=str --CKPT_E=int
  • --CKPT_V=str: the specific checkpoint version
  • --CKPT_E=int: the resumed epoch number

Multi-GPU Training and Gradient Accumulation

  1. Multi-GPU Training: Add --GPU='0, 1, 2, 3...' after the training scripts.
python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar' --GPU='0,1,2,3'

The batch size on each GPU will be divided into BATCH_SIZE/GPUs automatically.

  1. Gradient Accumulation: Add --ACCU=n after the training scripts
python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar' --ACCU=2

This makes the optimizer accumulate gradients for n mini-batches and update the model weights once. BATCH_SIZE should be divided by n.

Validation and Testing

Warning: The args --MODEL and --DATASET should be set to the same values as those in the training stage.

Validate on Local Machine Offline evaluation only support the evaluations on the coco_2014_val dataset now.

  1. Use saved checkpoint
python3 run.py --RUN='val' --MODEL='trar' --DATASET='{vqa, clevr}' --CKPT_V=str --CKPT_E=int
  1. Use the absolute path
python3 run.py --RUN='val' --MODEL='trar' --DATASET='{vqa, clevr}' --CKPT_PATH=str

Online Testing All the evaluations on the test dataset of VQA-v2 and CLEVR benchmarks can be achieved as follows:

python3 run.py --RUN='test' --MODEL='trar' --DATASET='{vqa, clevr}' --CKPT_V=str --CKPT_E=int

Result file are saved at:

results/result_test/result_run_ _ .json

You can upload the obtained result json file to Eval AI to evaluate the scores.

Models

Here we provide our pretrained model and log, please see MODEL.md

Acknowledgements

Citation

if TRAR is helpful for your research or you wish to refer the baseline results published here, we'd really appreciate it if you could cite this paper:

@InProceedings{Zhou_2021_ICCV,
    author    = {Zhou, Yiyi and Ren, Tianhe and Zhu, Chaoyang and Sun, Xiaoshuai and Liu, Jianzhuang and Ding, Xinghao and Xu, Mingliang and Ji, Rongrong},
    title     = {TRAR: Routing the Attention Spans in Transformer for Visual Question Answering},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {2074-2084}
}
You might also like...
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

 Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Official implementation of the ICCV 2021 paper:
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Comments
  • Could the authors provide REC code?

    Could the authors provide REC code?

    Hello,

    I am very interested in your work. I noticed that the authors have conducted experiments on REC datasets (RefCOCO, RefCOCO+, RefCOCOg).However, I only find the code about VQA datasets (VQA2.0 and CLEVR), could you provide this code of this part?

    Thank you!

    opened by QiuHeqian 5
  • 求助TRAR相关的问题

    求助TRAR相关的问题

    尊敬的TRAR作者,您好,我最近也在训练TRAR模型,在超参数基本同您一致的情况下,采用了您仓库中所提供的 8x8 Grid features数据集,经过多次训练,我的模型准确度大概在71.5%(VQA2.0)左右,达不到您在文中所提出的为72%, 另外,我也加载了您所提供的train+val+vg->test预训练模型参数,并在这个数据集上只能跑到70.6%(VQA2.0),综上,请问是因为这个8x8网格特征的问题吗?或者还是其他原因? 期待您的答复,谢谢。

    opened by MissionAbort 3
Releases(v1.0.0)
Owner
Ren Tianhe
Ren Tianhe
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023