[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Overview

PWC PWC

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021)

[arXiv][Project page >> coming soon]

Sanath Narayan*, Akshita Gupta*, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Mubarak Shah

( 🌟 denotes equal contribution)

Installation

The codebase is built on PyTorch 1.1.0 and tested on Ubuntu 16.04 environment (Python3.6, CUDA9.0, cuDNN7.5).

For installing, follow these intructions

conda create -n mlzsl python=3.6
conda activate mlzsl
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image scikit-learn opencv-python yacs joblib natsort h5py tqdm pandas

Install warmup scheduler

cd pytorch-gradual-warmup-lr; python setup.py install; cd ..

Attention Visualization

Results

Our approach on NUS-WIDE Dataset.

Our approach on OpenImages Dataset.

Training and Evaluation

NUS-WIDE

Step 1: Data preparation

  1. Download pre-computed features from here and store them at features folder inside BiAM/datasets/NUS-WIDE directory.
  2. [Optional] You can extract the features on your own by using the original NUS-WIDE dataset from here and run the below script:
python feature_extraction/extract_nus_wide.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full NUS-WIDE dataset, please run:

sh scripts/train_nus.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on NUS-WIDE. You can download the pretrained weights from here and store them at NUS-WIDE folder inside pretrained_weights directory.

sh scripts/evaluate_nus.sh

OPEN-IMAGES

Step 1: Data preparation

  1. Please download the annotations for training, validation, and testing into this folder.

  2. Store the annotations inside BiAM/datasets/OpenImages.

  3. To extract the features for OpenImages-v4 dataset run the below scripts for crawling the images and extracting features of them:

## Crawl the images from web
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `train`: download images into `./image_data/train/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `validation`: download images into `./image_data/validation/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `test`: download images into `./image_data/test/`

## Run feature extraction codes for all the 3 splits
python feature_extraction/extract_openimages_train.py
python feature_extraction/extract_openimages_test.py
python feature_extraction/extract_openimages_val.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full OpenImages-v4 dataset, please run:

sh scripts/train_openimages.sh
sh scripts/evaluate_openimages.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on OpenImages. You can download the pretrained weights from here and store them at OPENIMAGES folder inside pretrained_weights directory.

sh scripts/evaluate_openimages.sh

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citation

If you find this repository useful, please consider giving a star and citation 🎊 :

@article{narayan2021discriminative,
title={Discriminative Region-based Multi-Label Zero-Shot Learning},
author={Narayan, Sanath and Gupta, Akshita and Khan, Salman and  Khan, Fahad Shahbaz and Shao, Ling and Shah, Mubarak},
journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
publisher = {IEEE},
year={2021}
}

Contact

Should you have any question, please contact 📧 [email protected]

Owner
Akshita Gupta
Sem @IITR | Outreachy @mozilla | Research Engineer @IIAI
Akshita Gupta
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022