CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

Related tags

Deep LearningCoANet
Overview

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

This paper (CoANet) has been published in IEEE TIP 2021.

This code is licensed for non-commerical research purpose only.

Introduction

Extracting roads from satellite imagery is a promising approach to update the dynamic changes of road networks efficiently and timely. However, it is challenging due to the occlusions caused by other objects and the complex traffic environment, the pixel-based methods often generate fragmented roads and fail to predict topological correctness. In this paper, motivated by the road shapes and connections in the graph network, we propose a connectivity attention network (CoANet) to jointly learn the segmentation and pair-wise dependencies. Since the strip convolution is more aligned with the shape of roads, which are long-span, narrow, and distributed continuously. We develop a strip convolution module (SCM) that leverages four strip convolutions to capture long-range context information from different directions and avoid interference from irrelevant regions. Besides, considering the occlusions in road regions caused by buildings and trees, a connectivity attention module (CoA) is proposed to explore the relationship between neighboring pixels. The CoA module incorporates the graphical information and enables the connectivity of roads are better preserved. Extensive experiments on the popular benchmarks (SpaceNet and DeepGlobe datasets) demonstrate that our proposed CoANet establishes new state-of-the-art results.

SANet

Citations

If you are using the code/model provided here in a publication, please consider citing:

@article{mei2021coanet,
title={CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery},
author={Mei, Jie and Li, Rou-Jing and Gao, Wang and Cheng, Ming-Ming},
journal={IEEE Transactions on Image Processing},
volume={30},
pages={8540--8552},
year={2021},
publisher={IEEE}
}

Requirements

The code is built with the following dependencies:

  • Python 3.6 or higher
  • CUDA 10.0 or higher
  • PyTorch 1.2 or higher
  • tqdm
  • matplotlib
  • pillow
  • tensorboardX

Data Preparation

PreProcess SpaceNet Dataset

  • Convert SpaceNet 11-bit images to 8-bit Images.
  • Create road masks (3m), country wise.
  • Move all data to single folder.

SpaceNet dataset tree structure after preprocessing.

spacenet
|
└───gt
│   └───AOI_2_Vegas_img1.tif
└───images
│   └───RGB-PanSharpen_AOI_2_Vegas_img1.tif

Download DeepGlobe Road dataset in the following tree structure.

deepglobe
│
└───train
│   └───gt
│   └───images

Create Crops and connectivity cubes

python create_crops.py --base_dir ./data/spacenet/ --crop_size 650 --im_suffix .png --gt_suffix .png
python create_crops.py --base_dir ./data/deepglobe/train --crop_size 512 --im_suffix .png --gt_suffix .png
python create_connection.py --base_dir ./data/spacenet/crops 
python create_connection.py --base_dir ./data/deepglobe/train/crops 
spacenet
|   train.txt
|   val.txt
|   train_crops.txt   # created by create_crops.py
|   val_crops.txt     # created by create_crops.py
|
└───gt
│   
└───images
│   
└───crops       
│   └───connect_8_d1	# created by create_connection.py
│   └───connect_8_d3	# created by create_connection.py
│   └───gt		# created by create_crops.py
│   └───images	# created by create_crops.py

Testing

The pretrained model of CoANet can be downloaded:

Run the following scripts to evaluate the model.

  • SpaceNet
python test.py --ckpt='./run/spacenet/CoANet-resnet/CoANet-spacenet.pth.tar' --out_path='./run/spacenet/CoANet-resnet' --dataset='spacenet' --base_size=1280 --crop_size=1280 
  • DeepGlobe
python test.py --ckpt='./run/DeepGlobe/CoANet-resnet/CoANet-DeepGlobe.pth.tar' --out_path='./run/DeepGlobe/CoANet-resnet' --dataset='DeepGlobe' --base_size=1024 --crop_size=1024

Evaluate APLS

Training

Follow steps below to train your model:

  1. Configure your dataset path in [mypath.py].
  2. Input arguments: (see full input arguments via python train.py --help):
usage: train.py [-h] [--backbone resnet]
                [--out-stride OUT_STRIDE] [--dataset {spacenet,DeepGlobe}]
                [--workers N] [--base-size BASE_SIZE]
                [--crop-size CROP_SIZE] [--sync-bn SYNC_BN]
                [--freeze-bn FREEZE_BN] [--loss-type {ce,con_ce,focal}] [--epochs N]
                [--start_epoch N] [--batch-size N] [--test-batch-size N]
                [--use-balanced-weights] [--lr LR]
                [--lr-scheduler {poly,step,cos}] [--momentum M]
                [--weight-decay M] [--nesterov] [--no-cuda]
                [--gpu-ids GPU_IDS] [--seed S] [--resume RESUME]
                [--checkname CHECKNAME] [--ft] [--eval-interval EVAL_INTERVAL]
                [--no-val]
    
  1. To train CoANet using SpaceNet dataset and ResNet as backbone:
python train.py --dataset=spacenet

Contact

For any questions, please contact me via e-mail: [email protected].

Acknowledgment

This code is based on the pytorch-deeplab-xception codebase.

Owner
Jie Mei
PhD
Jie Mei
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022