CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

Related tags

Deep LearningCoANet
Overview

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

This paper (CoANet) has been published in IEEE TIP 2021.

This code is licensed for non-commerical research purpose only.

Introduction

Extracting roads from satellite imagery is a promising approach to update the dynamic changes of road networks efficiently and timely. However, it is challenging due to the occlusions caused by other objects and the complex traffic environment, the pixel-based methods often generate fragmented roads and fail to predict topological correctness. In this paper, motivated by the road shapes and connections in the graph network, we propose a connectivity attention network (CoANet) to jointly learn the segmentation and pair-wise dependencies. Since the strip convolution is more aligned with the shape of roads, which are long-span, narrow, and distributed continuously. We develop a strip convolution module (SCM) that leverages four strip convolutions to capture long-range context information from different directions and avoid interference from irrelevant regions. Besides, considering the occlusions in road regions caused by buildings and trees, a connectivity attention module (CoA) is proposed to explore the relationship between neighboring pixels. The CoA module incorporates the graphical information and enables the connectivity of roads are better preserved. Extensive experiments on the popular benchmarks (SpaceNet and DeepGlobe datasets) demonstrate that our proposed CoANet establishes new state-of-the-art results.

SANet

Citations

If you are using the code/model provided here in a publication, please consider citing:

@article{mei2021coanet,
title={CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery},
author={Mei, Jie and Li, Rou-Jing and Gao, Wang and Cheng, Ming-Ming},
journal={IEEE Transactions on Image Processing},
volume={30},
pages={8540--8552},
year={2021},
publisher={IEEE}
}

Requirements

The code is built with the following dependencies:

  • Python 3.6 or higher
  • CUDA 10.0 or higher
  • PyTorch 1.2 or higher
  • tqdm
  • matplotlib
  • pillow
  • tensorboardX

Data Preparation

PreProcess SpaceNet Dataset

  • Convert SpaceNet 11-bit images to 8-bit Images.
  • Create road masks (3m), country wise.
  • Move all data to single folder.

SpaceNet dataset tree structure after preprocessing.

spacenet
|
└───gt
│   └───AOI_2_Vegas_img1.tif
└───images
│   └───RGB-PanSharpen_AOI_2_Vegas_img1.tif

Download DeepGlobe Road dataset in the following tree structure.

deepglobe
│
└───train
│   └───gt
│   └───images

Create Crops and connectivity cubes

python create_crops.py --base_dir ./data/spacenet/ --crop_size 650 --im_suffix .png --gt_suffix .png
python create_crops.py --base_dir ./data/deepglobe/train --crop_size 512 --im_suffix .png --gt_suffix .png
python create_connection.py --base_dir ./data/spacenet/crops 
python create_connection.py --base_dir ./data/deepglobe/train/crops 
spacenet
|   train.txt
|   val.txt
|   train_crops.txt   # created by create_crops.py
|   val_crops.txt     # created by create_crops.py
|
└───gt
│   
└───images
│   
└───crops       
│   └───connect_8_d1	# created by create_connection.py
│   └───connect_8_d3	# created by create_connection.py
│   └───gt		# created by create_crops.py
│   └───images	# created by create_crops.py

Testing

The pretrained model of CoANet can be downloaded:

Run the following scripts to evaluate the model.

  • SpaceNet
python test.py --ckpt='./run/spacenet/CoANet-resnet/CoANet-spacenet.pth.tar' --out_path='./run/spacenet/CoANet-resnet' --dataset='spacenet' --base_size=1280 --crop_size=1280 
  • DeepGlobe
python test.py --ckpt='./run/DeepGlobe/CoANet-resnet/CoANet-DeepGlobe.pth.tar' --out_path='./run/DeepGlobe/CoANet-resnet' --dataset='DeepGlobe' --base_size=1024 --crop_size=1024

Evaluate APLS

Training

Follow steps below to train your model:

  1. Configure your dataset path in [mypath.py].
  2. Input arguments: (see full input arguments via python train.py --help):
usage: train.py [-h] [--backbone resnet]
                [--out-stride OUT_STRIDE] [--dataset {spacenet,DeepGlobe}]
                [--workers N] [--base-size BASE_SIZE]
                [--crop-size CROP_SIZE] [--sync-bn SYNC_BN]
                [--freeze-bn FREEZE_BN] [--loss-type {ce,con_ce,focal}] [--epochs N]
                [--start_epoch N] [--batch-size N] [--test-batch-size N]
                [--use-balanced-weights] [--lr LR]
                [--lr-scheduler {poly,step,cos}] [--momentum M]
                [--weight-decay M] [--nesterov] [--no-cuda]
                [--gpu-ids GPU_IDS] [--seed S] [--resume RESUME]
                [--checkname CHECKNAME] [--ft] [--eval-interval EVAL_INTERVAL]
                [--no-val]
    
  1. To train CoANet using SpaceNet dataset and ResNet as backbone:
python train.py --dataset=spacenet

Contact

For any questions, please contact me via e-mail: [email protected].

Acknowledgment

This code is based on the pytorch-deeplab-xception codebase.

Owner
Jie Mei
PhD
Jie Mei
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022