CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

Related tags

Deep LearningCoANet
Overview

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

This paper (CoANet) has been published in IEEE TIP 2021.

This code is licensed for non-commerical research purpose only.

Introduction

Extracting roads from satellite imagery is a promising approach to update the dynamic changes of road networks efficiently and timely. However, it is challenging due to the occlusions caused by other objects and the complex traffic environment, the pixel-based methods often generate fragmented roads and fail to predict topological correctness. In this paper, motivated by the road shapes and connections in the graph network, we propose a connectivity attention network (CoANet) to jointly learn the segmentation and pair-wise dependencies. Since the strip convolution is more aligned with the shape of roads, which are long-span, narrow, and distributed continuously. We develop a strip convolution module (SCM) that leverages four strip convolutions to capture long-range context information from different directions and avoid interference from irrelevant regions. Besides, considering the occlusions in road regions caused by buildings and trees, a connectivity attention module (CoA) is proposed to explore the relationship between neighboring pixels. The CoA module incorporates the graphical information and enables the connectivity of roads are better preserved. Extensive experiments on the popular benchmarks (SpaceNet and DeepGlobe datasets) demonstrate that our proposed CoANet establishes new state-of-the-art results.

SANet

Citations

If you are using the code/model provided here in a publication, please consider citing:

@article{mei2021coanet,
title={CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery},
author={Mei, Jie and Li, Rou-Jing and Gao, Wang and Cheng, Ming-Ming},
journal={IEEE Transactions on Image Processing},
volume={30},
pages={8540--8552},
year={2021},
publisher={IEEE}
}

Requirements

The code is built with the following dependencies:

  • Python 3.6 or higher
  • CUDA 10.0 or higher
  • PyTorch 1.2 or higher
  • tqdm
  • matplotlib
  • pillow
  • tensorboardX

Data Preparation

PreProcess SpaceNet Dataset

  • Convert SpaceNet 11-bit images to 8-bit Images.
  • Create road masks (3m), country wise.
  • Move all data to single folder.

SpaceNet dataset tree structure after preprocessing.

spacenet
|
└───gt
│   └───AOI_2_Vegas_img1.tif
└───images
│   └───RGB-PanSharpen_AOI_2_Vegas_img1.tif

Download DeepGlobe Road dataset in the following tree structure.

deepglobe
│
└───train
│   └───gt
│   └───images

Create Crops and connectivity cubes

python create_crops.py --base_dir ./data/spacenet/ --crop_size 650 --im_suffix .png --gt_suffix .png
python create_crops.py --base_dir ./data/deepglobe/train --crop_size 512 --im_suffix .png --gt_suffix .png
python create_connection.py --base_dir ./data/spacenet/crops 
python create_connection.py --base_dir ./data/deepglobe/train/crops 
spacenet
|   train.txt
|   val.txt
|   train_crops.txt   # created by create_crops.py
|   val_crops.txt     # created by create_crops.py
|
└───gt
│   
└───images
│   
└───crops       
│   └───connect_8_d1	# created by create_connection.py
│   └───connect_8_d3	# created by create_connection.py
│   └───gt		# created by create_crops.py
│   └───images	# created by create_crops.py

Testing

The pretrained model of CoANet can be downloaded:

Run the following scripts to evaluate the model.

  • SpaceNet
python test.py --ckpt='./run/spacenet/CoANet-resnet/CoANet-spacenet.pth.tar' --out_path='./run/spacenet/CoANet-resnet' --dataset='spacenet' --base_size=1280 --crop_size=1280 
  • DeepGlobe
python test.py --ckpt='./run/DeepGlobe/CoANet-resnet/CoANet-DeepGlobe.pth.tar' --out_path='./run/DeepGlobe/CoANet-resnet' --dataset='DeepGlobe' --base_size=1024 --crop_size=1024

Evaluate APLS

Training

Follow steps below to train your model:

  1. Configure your dataset path in [mypath.py].
  2. Input arguments: (see full input arguments via python train.py --help):
usage: train.py [-h] [--backbone resnet]
                [--out-stride OUT_STRIDE] [--dataset {spacenet,DeepGlobe}]
                [--workers N] [--base-size BASE_SIZE]
                [--crop-size CROP_SIZE] [--sync-bn SYNC_BN]
                [--freeze-bn FREEZE_BN] [--loss-type {ce,con_ce,focal}] [--epochs N]
                [--start_epoch N] [--batch-size N] [--test-batch-size N]
                [--use-balanced-weights] [--lr LR]
                [--lr-scheduler {poly,step,cos}] [--momentum M]
                [--weight-decay M] [--nesterov] [--no-cuda]
                [--gpu-ids GPU_IDS] [--seed S] [--resume RESUME]
                [--checkname CHECKNAME] [--ft] [--eval-interval EVAL_INTERVAL]
                [--no-val]
    
  1. To train CoANet using SpaceNet dataset and ResNet as backbone:
python train.py --dataset=spacenet

Contact

For any questions, please contact me via e-mail: [email protected].

Acknowledgment

This code is based on the pytorch-deeplab-xception codebase.

Owner
Jie Mei
PhD
Jie Mei
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022