Explaining neural decisions contrastively to alternative decisions.

Overview

Contrastive Explanations for Model Interpretability

This is the repository for the paper "Contrastive Explanations for Model Interpretability", about explaining neural model decisions against alternative decisions.

Authors: Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, Yanai Elazar, Yejin Choi, Yoav Goldberg

Getting Started

Setup

conda create -n contrastive python=3.8
conda activate contrastive
pip install allennlp==1.2.0rc1
pip install allennlp-models==1.2.0rc1.dev20201014
pip install jupyterlab
pip install pandas
bash scripts/download_data.sh

Contrastive projection

If you're here just to know how we implemented contrastive projection, here it is:

u = classifier_w[fact_idx] - classifier_w[foil_idx]
contrastive_projection = np.outer(u, u) / np.dot(u, u)

Very simple :)

contrastive_projection is a projection matrix that projects the model's latent representation of some example h into the direction of h that separates the logits of the fact and foil.

Training MNLI/BIOS models

bash scripts/train_sequence_classification.sh 

Highlight ranking (Sections 4.3, 5.3)

Run the notebooks/mnli-highlight-featurerank.ipynb or notebooks/bios-highlight-featurerank.ipynb jupyter notebooks.

These notebooks load the respective models, and then run the highlight ranking procedure.

Foil ranking (Section 4.1)

First, cache the model's encodings of the dev set examples:

bash scripts/cache_encodings_bios.sh

Then run the notebooks/bios-highlight-foilrank.ipynb notebook.

Contrastive decision making (Section 4.4)

First, cache the model's encodings of the dev set examples (skip if already executed):

bash scripts/cache_encodings_bios.sh

Then run the notebooks/bios-foilpower.ipynb notebook.

Foil ranking for BIOS concepts (Section 4.2)

First, generate concept labels as a numpy matrix from the BIOS dataset:

python scripts/bios_concepts.py --data-path data/bios/train.jsonl --concept-path experiments/models/bios/roberta-large/concepts/gender-male/train
python scripts/bios_concepts.py --data-path data/bios/dev.jsonl --concept-path experiments/models/bios/roberta-large/concepts/gender-male/dev
python scripts/bios_concepts.py --data-path data/bios/test.jsonl --concept-path experiments/models/bios/roberta-large/concepts/gender-male/test

Then, run Amnesic Probing:

Foil ranking for MNLI concepts (Section 5.2)

Overlap concept:

First, generate concept labels as a numpy matrix from the BIOS dataset:

python scripts/mnli_concepts.py --data-path data/mnli/train.jsonl --concept-path experiments/models/mnli/roberta-large/concepts/overlap/train
python scripts/mnli_concepts.py --data-path data/mnli/dev.jsonl --concept-path experiments/models/mnli/roberta-large/concepts/overlap/dev
python scripts/mnli_concepts.py --data-path data/mnli/test.jsonl --concept-path experiments/models/mnli/roberta-large/concepts/overlap/test

Then, run Amnesic Probing:

Negation concept:

The examples we used for the negation concept analysis are:

data/nli_negation_concept/entailment.jsonl  # entailment instances
data/nli_negation_concept/entailment_with_negation.jsonl  # the above entailment instances, paraphrased with negation words
data/nli_negation_concept/neutral.jsonl  # neutral instances
data/nli_negation_concept/neutral_with_negation.jsonl  # the above neutral instances, paraphrased with negation words

To analyze them with respect to the trained MultiNLI model, run the notebook notebooks/mnli-negation-foilrank.ipynb.

Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022