NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

Overview

OptiPrompt

This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall.

We propose OptiPrompt, a simple and effective approach for Factual Probing. OptiPrompt optimizes the prompts on the input embedding space directly. It outperforms previous prompting methods on the LAMA benchmark. Furthermore, in order to better interprete probing results, we propose control experiments based on the probing results on randomly initialized models. Please check our paper for details.

Quick links

Setup

Install dependecies

Our code is based on python 3.7. All experiments are run on a single GPU.

Please install all the dependency packages using the following command:

pip install -r requirements.txt

Download the data

We pack all datasets we used in our experiments here. Please download it and extract the files to ./data, or run the following commands to autoamtically download and extract it.

bash script/download_data.sh

The datasets are structured as below.

data
├── LAMA-TREx                         # The original LAMA-TREx test set (34,039 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx_UHN                     # The LAMA-TREx_UHN test set (27,102 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx-easy-hard               # The easy and hard partitions of the LAMA-TREx dataset (check the paper for details)
│   ├── Easy                          # The LAMA-easy partition (10,546 examples)
│   │   ├── P17.jsonl                 # Testing file for the relation `P17`
│   │   └── ...
│   └── Hard                          # The LAMA-hard partition (23,493 examples)
│       ├── P17.jsonl                 # Testing file for the relation `P17`
│       └── ...
├── autoprompt_data                   # Training data collected by AutoPrompt
│   ├── P17                           # Train/dev/test files for the relation `P17`
│   │   ├── train.jsonl               # Training examples
│   │   ├── dev.jsonl                 # Development examples
│   │   └── test.jsonl                # Test examples (the same as LAMA-TREx test set)
│   └── ...
└── cmp_lms_data                      # Training data collected by ourselves which can be used for BERT, RoBERTa, and ALBERT (we only use this dataset in Table 6 in the paper)
    ├── P17                           # Train/dev/test files for the relation `P17`
    │   ├── train.jsonl               # Training examples
    │   ├── dev.jsonl                 # Development examples
    │   ├── test.jsonl                # Test examples (a subset of the LAMA-TREx test set, filtered using the common vocab of three models)
    └── ...

Run OptiPrompt

Train/evaluate OptiPrompt

You can use code/run_optiprompt.py to train or evaluate the prompts on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_optiprompt.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions \
    [--init_manual_template] [--num_vectors 5 | 10]

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • init_manual_template: whether initialize the dense vectors in OptiPrompt using the manual prompts.
  • num_vectors: how many dense vectors are added in OptiPrompt (this argument is valid only when init_manual_template is not set).
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_optiprompt.sh) to run OptiPrompt on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_opti.sh

The default setting of this script is to run OptiPromot initialized with manual prompts on the pre-trained bert-base-cased model (no random initialization is used). The results will be stored in the outputs directory.

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_optiprompt.sh if you want to run experiments on other settings.

Run Fine-tuning

We release the code that we used in our experiments (check Section 4 in the paper).

Fine-tuning language models on factual probing

You can use code/run_finetune.py to fine-tune a language model on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_finetune.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_finetune.sh) to run fine-tuning on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_finetune.sh

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_finetune.sh if you want to run experiments on other settings.

Evaluate LAMA/LPAQA/AutoPrompt prompts

We provide a script to evaluate prompts released in previous works (based on code/run_finetune.py with only --do_eval). Please use the foolowing command:

bash scripts/run_eval_prompts {lama | lpaqa | autoprompt}

Questions?

If you have any questions related to the code or the paper, feel free to email Zexuan Zhong ([email protected]) or Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{zhong2021factual,
   title={Factual Probing Is [MASK]: Learning vs. Learning to Recall},
   author={Zhong, Zexuan and Friedman, Dan and Chen, Danqi},
   booktitle={North American Association for Computational Linguistics (NAACL)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023