NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

Overview

OptiPrompt

This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall.

We propose OptiPrompt, a simple and effective approach for Factual Probing. OptiPrompt optimizes the prompts on the input embedding space directly. It outperforms previous prompting methods on the LAMA benchmark. Furthermore, in order to better interprete probing results, we propose control experiments based on the probing results on randomly initialized models. Please check our paper for details.

Quick links

Setup

Install dependecies

Our code is based on python 3.7. All experiments are run on a single GPU.

Please install all the dependency packages using the following command:

pip install -r requirements.txt

Download the data

We pack all datasets we used in our experiments here. Please download it and extract the files to ./data, or run the following commands to autoamtically download and extract it.

bash script/download_data.sh

The datasets are structured as below.

data
├── LAMA-TREx                         # The original LAMA-TREx test set (34,039 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx_UHN                     # The LAMA-TREx_UHN test set (27,102 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx-easy-hard               # The easy and hard partitions of the LAMA-TREx dataset (check the paper for details)
│   ├── Easy                          # The LAMA-easy partition (10,546 examples)
│   │   ├── P17.jsonl                 # Testing file for the relation `P17`
│   │   └── ...
│   └── Hard                          # The LAMA-hard partition (23,493 examples)
│       ├── P17.jsonl                 # Testing file for the relation `P17`
│       └── ...
├── autoprompt_data                   # Training data collected by AutoPrompt
│   ├── P17                           # Train/dev/test files for the relation `P17`
│   │   ├── train.jsonl               # Training examples
│   │   ├── dev.jsonl                 # Development examples
│   │   └── test.jsonl                # Test examples (the same as LAMA-TREx test set)
│   └── ...
└── cmp_lms_data                      # Training data collected by ourselves which can be used for BERT, RoBERTa, and ALBERT (we only use this dataset in Table 6 in the paper)
    ├── P17                           # Train/dev/test files for the relation `P17`
    │   ├── train.jsonl               # Training examples
    │   ├── dev.jsonl                 # Development examples
    │   ├── test.jsonl                # Test examples (a subset of the LAMA-TREx test set, filtered using the common vocab of three models)
    └── ...

Run OptiPrompt

Train/evaluate OptiPrompt

You can use code/run_optiprompt.py to train or evaluate the prompts on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_optiprompt.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions \
    [--init_manual_template] [--num_vectors 5 | 10]

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • init_manual_template: whether initialize the dense vectors in OptiPrompt using the manual prompts.
  • num_vectors: how many dense vectors are added in OptiPrompt (this argument is valid only when init_manual_template is not set).
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_optiprompt.sh) to run OptiPrompt on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_opti.sh

The default setting of this script is to run OptiPromot initialized with manual prompts on the pre-trained bert-base-cased model (no random initialization is used). The results will be stored in the outputs directory.

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_optiprompt.sh if you want to run experiments on other settings.

Run Fine-tuning

We release the code that we used in our experiments (check Section 4 in the paper).

Fine-tuning language models on factual probing

You can use code/run_finetune.py to fine-tune a language model on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_finetune.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_finetune.sh) to run fine-tuning on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_finetune.sh

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_finetune.sh if you want to run experiments on other settings.

Evaluate LAMA/LPAQA/AutoPrompt prompts

We provide a script to evaluate prompts released in previous works (based on code/run_finetune.py with only --do_eval). Please use the foolowing command:

bash scripts/run_eval_prompts {lama | lpaqa | autoprompt}

Questions?

If you have any questions related to the code or the paper, feel free to email Zexuan Zhong ([email protected]) or Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{zhong2021factual,
   title={Factual Probing Is [MASK]: Learning vs. Learning to Recall},
   author={Zhong, Zexuan and Friedman, Dan and Chen, Danqi},
   booktitle={North American Association for Computational Linguistics (NAACL)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022