๐Ÿ’ƒ VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

Related tags

Deep LearningVALSE
Overview

VALSE ๐Ÿ’ƒ

๐Ÿ’ƒ VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena. https://arxiv.org/abs/2112.07566

Data Instructions

Please find the data in the data folder. The dataset is in json format and contains the following relevant fields:

  • A reference to the image in the original dataset: dataset and image_file.
  • The valid sentence, the caption for VALSE: caption.
  • The altered caption, the foil.
  • The annotator's votes (3 annotators per sample): mturk.
    • The subentry caption counts the number of annotators who chose the caption, but/and not the foil, to be the one describing the image.
    • The subentry foil counts how many of the three annotators chose the foil to be (also) describing the image.
    • For more information, see subsec. 4.4 and App. E of the paper.

โ€ผ๏ธ Please be aware that the jsons are containing both valid (meaning: validated by annotators) and non-validated samples. In order to work only with the valid set, please consider filtering them:

We consider a valid foil to mean: at least two out of three annotators identified the caption, but not the foil, as the text which accurately describes the image.

This means that the valid samples of the dataset are the ones where sample["mturk"]["caption"] >= 2.

Example instance:

{
    "actions_test_0": {
        "dataset": "SWiG",
        "original_split": "test",                 # the split of the original dataset in which the sample belonged to
        "dataset_idx": "exercising_255.jpg",      # the sample id in the original dataset
        "linguistic_phenomena": "actions",        # the linguistic phenomenon targeted
        "image_file": "exercising_255.jpg",
        "caption": "A man exercises his torso.",
        "classes": "man",                         # the word of the caption that was replaced
        "classes_foil": "torso",                  # the foil word / phrase
        "mturk": {
            "foil": 0,
            "caption": 3,
            "other": 0
        },
        "foil": "A torso exercises for a man."
    }, ...
}

Images

For the images, please follow the downloading instructions of the respective original dataset. The provenance of the original images is mentioned in the json files in the field dataset.

Reference

Please cite our ๐Ÿ’ƒ VALSE paper if you are using this dataset.

@misc{parcalabescu2021valse,
      title={VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena}, 
      author={Letitia Parcalabescu and Michele Cafagna and Lilitta Muradjan and Anette Frank and Iacer Calixto and Albert Gatt},
      year={2021},
      eprint={2112.07566},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Heidelberg-NLP
Heidelberg Natural Language Processing Group
Heidelberg-NLP
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: ็ฎ€ไฝ“ไธญๆ–‡ | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Namish Khanna 40 Oct 11, 2022
FinEAS: Financial Embedding Analysis of Sentiment ๐Ÿ“ˆ

FinEAS: Financial Embedding Analysis of Sentiment ๐Ÿ“ˆ (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tรผbingen 19 Dec 12, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022