This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

Overview

slue-toolkit

made-with-python License: MIT

We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks. Refer https://arxiv.org/abs/2111.10367 for more details.

News

  • Nov. 22: We release the SLUE paper on arXiv along with the slue-toolkit repository. The repository contains data processing and evaluation scripts. We will publish the scripts for trainig the baseline models soon.

Installation

  1. git clone this repository and install slue-toolkit (development mode)
git clone https://github.com/asappresearch/slue-toolkit.git
pip install -e .

or install directly from Github

pip install git+https://github.com/asappresearch/slue-toolkit.git
  1. Install additional dependency based on your choice (e.g. you need fairseq and transformers for baselines)

SLUE Tasks

Automatic Speech Recognition (ASR)

Although this is not a SLU task, ASR can help analyze performance of downstream SLU tasks on the same domain. Additionally, pipeline approaches depend on ASR outputs, making ASR relevant to SLU. ASR is evaluated using word error rate (WER).

Named Entity Recognition (NER)

Named entity recognition involves detecting the named entities and their tags (types) in a given sentence. We evaluate performance using micro-averaged F1 and label-F1 scores. The F1 score evaluates an unordered list of named entity phrase and tag pairs predicted for each sentence. Only the tag predictions are considered for label-F1.

Sentiment Analysis (SA)

Sentiment analysis refers to classifying a given speech segment as having negative, neutral, or positive sentiment. We evaluate SA using macro-averaged (unweighted) recall and F1 scores.

Datasets

Corpus Size - utts (hours) Tasks License
Fine-tune Dev Test
SLUE-VoxPopuli 5,000 (14.5) 1,753 (5.0) 1,842 (4.9) ASR, NER CC0 (check complete license here)
SLUE-VoxCeleb 5,777 (12.8) 955 (2.1) 4,052 (9.0) ASR, SA CC-BY 4.0 (check complete license here)

For SLUE, you need VoxCeleb and VoxPopuli dataset. We carefully curated subset of those dataset for fine-tuning and evaluation for SLUE tasks, and we re-distribute the the subsets. Thus, you don't need to download a whole gigantic datasets. In the dataset, we also includes the human annotation and transcription for SLUE tasks. All you need to do is just running the script below and it will download and pre-process the dataset.

Download and pre-process dataset

bash scripts/download_datasets.sh

SLUE score evaluation

The test set data and annotation will be used for the official SLUE score evaluation, however we will not release the test set annotation. Thus, the SLUE score can be evaluated by submitting your prediction result in tsv format. We will prepare the website to accept your submission. Please stay tuned for this.

Model development rule

To train model, You can use fine-tuning and dev sets (audio, transcription and annotation) except the test set of SLUE task. Additionally you can use any kind of external dataset whether it is labeled or unlabeled for any purpose of training (e.g. pre-training and fine-tuning).

For vadidation of your model, you can use official dev set we provide, or you can make your own splits or cross-validation splits by mixing fine-tuning and dev set all together.

Baselines

ASR

Fine-tuning

Assuming that the preprocessed manifest files are in manifest/slue-voxceleb and manifest/slue-voxpopuli for SLUE-VoxCeleb and SLUE-VoxPopuli. This command fine-tune a wav2vec 2.0 base model on these two datasets using one GPU.

bash baselines/asr/ft-w2v2-base.sh manifest/slue-voxceleb save/asr/w2v2-base-vc
bash baselines/asr/ft-w2v2-base.sh manifest/slue-voxpopuli save/asr/w2v2-base-vp

Evaluation

To evaluate the fine-tuned wav2vec 2.0 ASR models on the dev set, please run the following commands.

python slue_toolkit/eval/eval_w2v.py eval_asr save/asr/w2v2-base-vc --data manifest/slue-voxceleb --subset dev
python slue_toolkit/eval/eval_w2v.py eval_asr save/asr/w2v2-base-vp --data manifest/slue-voxpopuli --subset dev

The WER will be printed directly. The predictions are saved in save/asr/w2v2-base-vc/pred-dev.wrd and save/asr/w2v2-base-vp/pred-dev.wrd and can be used for pipeline models.

More detail baseline experiment described here

NER

Fine-tuning End-to-end model

Assuming that the preprocessed manifest files are in manifest/slue-voxpopuli for SLUE-VoxPopuli. This command fine-tune a wav2vec 2.0 base model using one GPU.

bash baselines/ner/e2e_scripts/ft-w2v2-base.sh manifest/slue-voxpopuli/e2e_ner save/e2e_ner/w2v2-base

Evaluating End-to-End model

To evaluate the fine-tuned wav2vec 2.0 E2E NER model on the dev set, please run the following command. (decoding without language model)

bash baselines/ner/e2e_scripts/eval-ner.sh w2v2-base dev combined nolm

More detail baseline experiment described here

Sentiment Analysis

Fine-tuning

This command fine-tune a wav2vec 2.0 base model on the voxceleb dataset

bash baselines/sentiment/ft-w2v2-base-senti.sh manifest/slue-voxceleb save/sentiment/w2v2-base

Evaluation

To evaluate the fine-tuned wav2vec 2.0 sentiment model, run following commands or run baselines/sentiment/e2e_scripts/eval.sh

python3 slue_toolkit/eval/eval_w2v_sentiment.py --save-dir save/sentiment/w2v2-base --data manifest/slue-voxceleb --subset dev

More detail baseline experiment described here

Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022