[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

Overview

DSM

The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion

Project Website;

Datasets list and some visualizations/provided weights are preparing now.

1. Introduction (scene-dominated to motion-dominated)

Video datasets are usually scene-dominated, We propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid.

The generated triplet is as below:

What DSM learned?

With DSM pretrain, the model learn to focus on motion region (Not necessarily actor) powerful without one label available.

2. Installation

Dataset

Please refer dataset.md for details.

Requirements

  • Python3
  • pytorch1.1+
  • PIL
  • Intel (on the fly decode)

3. Structure

  • datasets
    • list
      • hmdb51: the train/val lists of HMDB51
      • ucf101: the train/val lists of UCF101
      • kinetics-400: the train/val lists of kinetics-400
      • diving48: the train/val lists of diving48
  • experiments
    • logs: experiments record in detials
    • gradientes: grad check
    • visualization:
  • src
    • data: load data
    • loss: the loss evaluate in this paper
    • model: network architectures
    • scripts: train/eval scripts
    • augment: detail implementation of Spatio-temporal Augmentation
    • utils
    • feature_extract.py: feature extractor given pretrained model
    • main.py: the main function of finetune
    • trainer.py
    • option.py
    • pt.py: self-supervised pretrain
    • ft.py: supervised finetune

DSM(Triplet)/DSM/Random

Self-supervised Pretrain

Kinetics
bash scripts/kinetics/pt.sh
UCF101
bash scripts/ucf101/pt.sh

Supervised Finetune (Clip-level)

HMDB51
bash scripts/hmdb51/ft.sh
UCF101
bash scripts/ucf101/ft.sh
Kinetics
bash scripts/kinetics/ft.sh

Video-level Evaluation

Following common practice TSN and Non-local. The final video-level result is average by 10 temporal window sampling + corner crop, which lead to better result than clip-level. Refer test.py for details.

Pretrain And Eval In one step

bash scripts/hmdb51/pt_and_ft_hmdb51.sh

Notice: More Training Options and ablation study Can be find in scripts

Video Retrieve and other visualization

(1). Feature Extractor

As STCR can be easily extend to other video representation task, we offer the scripts to perform feature extract.

python feature_extractor.py

The feature will be saved as a single numpy file in the format [video_nums,features_dim] for further visualization.

(2). Reterival Evaluation

modify line60-line62 in reterival.py.

python reterival.py

Results

Action Recognition

UCF101 Pretrained (I3D)

Method UCF101 HMDB51
Random Initialization 47.9 29.6
MoCo Baseline 62.3 36.5
DSM(Triplet) 70.7 48.5
DSM 74.8 52.5

Kinetics Pretrained

Video Retrieve (UCF101-C3D)

Method @1 @5 @10 @20 @50
DSM 16.8 33.4 43.4 54.6 70.7

Video Retrieve (HMDB51-C3D)

Method @1 @5 @10 @20 @50
DSM 8.2 25.9 38.1 52.0 75.0

More Visualization

Acknowledgement

This work is partly based on STN, UEL and MoCo.

License

Citation

If you use our code in your research or wish to refer to the baseline results, pleasuse use the followint BibTex entry.

@inproceedings{wang2020enhancing,
  author    = {Lin, Ji and Zhang, Richard and Ganz, Frieder and Han, Song and Zhu, Jun-Yan},
  title     = {Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion},
  booktitle = {AAAI},
  year      = {2021},
}
Owner
Jinpeng Wang
Focus on Biometrics and Video Understanding, Self/Semi Supervised Learning.
Jinpeng Wang
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022