[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

Overview

DSM

The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion

Project Website;

Datasets list and some visualizations/provided weights are preparing now.

1. Introduction (scene-dominated to motion-dominated)

Video datasets are usually scene-dominated, We propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid.

The generated triplet is as below:

What DSM learned?

With DSM pretrain, the model learn to focus on motion region (Not necessarily actor) powerful without one label available.

2. Installation

Dataset

Please refer dataset.md for details.

Requirements

  • Python3
  • pytorch1.1+
  • PIL
  • Intel (on the fly decode)

3. Structure

  • datasets
    • list
      • hmdb51: the train/val lists of HMDB51
      • ucf101: the train/val lists of UCF101
      • kinetics-400: the train/val lists of kinetics-400
      • diving48: the train/val lists of diving48
  • experiments
    • logs: experiments record in detials
    • gradientes: grad check
    • visualization:
  • src
    • data: load data
    • loss: the loss evaluate in this paper
    • model: network architectures
    • scripts: train/eval scripts
    • augment: detail implementation of Spatio-temporal Augmentation
    • utils
    • feature_extract.py: feature extractor given pretrained model
    • main.py: the main function of finetune
    • trainer.py
    • option.py
    • pt.py: self-supervised pretrain
    • ft.py: supervised finetune

DSM(Triplet)/DSM/Random

Self-supervised Pretrain

Kinetics
bash scripts/kinetics/pt.sh
UCF101
bash scripts/ucf101/pt.sh

Supervised Finetune (Clip-level)

HMDB51
bash scripts/hmdb51/ft.sh
UCF101
bash scripts/ucf101/ft.sh
Kinetics
bash scripts/kinetics/ft.sh

Video-level Evaluation

Following common practice TSN and Non-local. The final video-level result is average by 10 temporal window sampling + corner crop, which lead to better result than clip-level. Refer test.py for details.

Pretrain And Eval In one step

bash scripts/hmdb51/pt_and_ft_hmdb51.sh

Notice: More Training Options and ablation study Can be find in scripts

Video Retrieve and other visualization

(1). Feature Extractor

As STCR can be easily extend to other video representation task, we offer the scripts to perform feature extract.

python feature_extractor.py

The feature will be saved as a single numpy file in the format [video_nums,features_dim] for further visualization.

(2). Reterival Evaluation

modify line60-line62 in reterival.py.

python reterival.py

Results

Action Recognition

UCF101 Pretrained (I3D)

Method UCF101 HMDB51
Random Initialization 47.9 29.6
MoCo Baseline 62.3 36.5
DSM(Triplet) 70.7 48.5
DSM 74.8 52.5

Kinetics Pretrained

Video Retrieve (UCF101-C3D)

Method @1 @5 @10 @20 @50
DSM 16.8 33.4 43.4 54.6 70.7

Video Retrieve (HMDB51-C3D)

Method @1 @5 @10 @20 @50
DSM 8.2 25.9 38.1 52.0 75.0

More Visualization

Acknowledgement

This work is partly based on STN, UEL and MoCo.

License

Citation

If you use our code in your research or wish to refer to the baseline results, pleasuse use the followint BibTex entry.

@inproceedings{wang2020enhancing,
  author    = {Lin, Ji and Zhang, Richard and Ganz, Frieder and Han, Song and Zhu, Jun-Yan},
  title     = {Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion},
  booktitle = {AAAI},
  year      = {2021},
}
Owner
Jinpeng Wang
Focus on Biometrics and Video Understanding, Self/Semi Supervised Learning.
Jinpeng Wang
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023