A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

Overview

banner-logo


COMPOTE: Calibration Of Multi-focus PlenOpTic camEra.

COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

Quick Start

Pre-requisites

The COMPOTE applications have a light dependency list:

  • boost version 1.54 and up, portable C++ source libraries,
  • libpleno, an open-souce C++ library for plenoptic camera,

and was compiled and tested on:

  • Ubuntu 18.04.4 LTS, GCC 7.5.0, with Eigen 3.3.4, Boost 1.65.1, and OpenCV 3.2.0.

Compilation & Test

If you are comfortable with Linux and CMake and have already installed the prerequisites above, the following commands should compile the applications on your system.

mkdir build && cd build
cmake ..
make -j6

To test the calibrate application you can use the example script from the build directory:

./../example/run_calibration.sh

Applications

Configuration

All applications use .js (json) configuration file. The path to this configuration files are given in the command line using boost program options interface.

Options:

short long default description
-h --help Print help messages
-g --gui true Enable GUI (image viewers, etc.)
-v --verbose true Enable output with extra information
-l --level ALL (15) Select level of output to print (can be combined): NONE=0, ERR=1, WARN=2, INFO=4, DEBUG=8, ALL=15
-i --pimages Path to images configuration file
-c --pcamera Path to camera configuration file
-p --pparams "internals.js" Path to camera internal parameters configuration file
-s --pscene Path to scene configuration file
-f --features "observations.bin.gz" Path to observations file
-e --extrinsics "extrinsics.js" Path to save extrinsics parameters file
-o --output "intrinsics.js" Path to save intrinsics parameters file

For instance to run calibration:

./calibrate -i images.js -c camera.js -p params.js -f observations.bin.gz -s scene.js -g true -l 7

Configuration file examples are given for the dataset R12-A in the folder examples/.

Pre-calibration

precalibrate uses whites raw images taken at different aperture to calibrate the Micro-Images Array (MIA) and computes the internal parameters used to initialize the camera and to detect the Blur Aware Plenoptic (BAP) features.

Requirements: minimal camera configuration, white images. Output: radii statistics (.csv), internal parameters, initial camera parameters.

Features Detection

detect extracts the newly introduced Blur Aware Plenoptic (BAP) features in checkerboard images.

Requirements: calibrated MIA, internal parameters, checkerboard images, and scene configuration. Output: micro-image centers and BAP features.

Camera Calibration

calibrate runs the calibration of the plenoptic camera (set I=0 to act as pinholes array, or I>0 for multifocus case). It generates the intrinsics and extrinsics parameters.

Requirements: calibrated MIA, internal parameters, features and scene configuration. If none are given all steps are re-done. Output: error statistics, calibrated camera parameters, camera poses.

Extrinsics Estimation & Calibration Evaluation

extrinsics runs the optimization of extrinsics parameters given a calibrated camera and generates the poses.

Requirements: internal parameters, features, calibrated camera and scene configuration. Output: error statistics, estimated poses.

COMPOTE also provides two applications to run stats evaluation on the optimized poses optained with a constant step linear translation along the z-axis:

  • linear_evaluation gives the absolute errors (mean + std) and the relative errors (mean + std) of translation of the optimized poses,
  • linear_raytrix_evaluation takes .xyz pointcloud obtained by Raytrix calibration software and gives the absolute errors (mean + std) and the relative errors (mean + std) of translation.

Note: those apps are legacy and have been moved and generalized in the [BLADE] app's evaluate.

Blur Proportionality Coefficient Calibration

blurcalib runs the calibration of the blur proportionality coefficient kappa linking the spread parameter of the PSF with the blur radius. It updates the internal parameters with the optimized value of kappa.

Requirements: internal parameters, features and images. Output: internal parameters.

Datasets

Datasets R12-A, R12-B and R12-C can be downloaded from here. The dataset R12-D, and the simulated unfocused plenoptic camera dataset UPC-S are also available from here.

Citing

If you use COMPOTE or libpleno in an academic context, please cite the following publication:

@inproceedings{labussiere2020blur,
  title 	=	{Blur Aware Calibration of Multi-Focus Plenoptic Camera},
  author	=	{Labussi{\`e}re, Mathieu and Teuli{\`e}re, C{\'e}line and Bernardin, Fr{\'e}d{\'e}ric and Ait-Aider, Omar},
  booktitle	=	{Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages		=	{2545--2554},
  year		=	{2020}
}

License

COMPOTE is licensed under the GNU General Public License v3.0. Enjoy!


Owner
ComSEE - Computers that SEE
Computer Vision research team of the Image, Systems of Perception and Robotics (ISPR) department of the Institut Pascal.
ComSEE - Computers that SEE
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
Xintao 1.4k Dec 25, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022