Robust and Accurate Object Detection via Self-Knowledge Distillation

Related tags

Deep Learningudfa
Overview

Robust and Accurate Object Detection via Self-Knowledge Distillation

paper:https://arxiv.org/abs/2111.07239

Environments

  • Python 3.7
  • Cuda 10.1
  • Prepare dependency

Notes: We revise MMCV to adapt adversarial algorithms. Therefore we suggest that you prepare environments strictly as follows:

conda create -n udfa python=3.7
conda activate udfa
sh prepare_env.sh

Prepare datasets

  • VOC0712, download from http://host.robots.ox.ac.uk/pascal/VOC/, and place it under data directory

  • COCO2017, download from https://cocodataset.org/#download, and place it under data directory

  • The structure of datasets is shown as follows:

    structure of dataset

Train

VOC dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_std.py 
    cd work_dirs/gflv2_r34_fpn_voc_std
    cp epoch_12.pth ../../weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa with advprop on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss1.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_mixbn.py --load-from weights/gflv2_r34_voc_pre.pth
    

COCO dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_std.py 
    cd work_dirs/gflv2_r34_fpn_coco_std
    cp epoch_12.pth ../../weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using udfa on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_kdss.py --load-from weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_mixbn.py --load-from weights/gflv2_r34_coco_pre.pth
    

Test

  • Evlauate the clean AP or adversarial robustness on PASCAL_VOC 2007 test set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_voc_std.py  --checkpoint weights/gflv2_r34_voc_pre.pth --num_steps 0 --step_size 2 --eval mAP
    
  • Evlauate the clean AP or adversarial robustness on COCO 2017val set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_coco_std.py  --checkpoint weights/gflv2_r34_coco_pre.pth --num_steps 0 --step_size 2 --eval bbox
    

Acknowledgement

Our project is based on ImageCorruptions, MMDetection and MMCV.

Owner
Weipeng Xu
Weipeng Xu
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022