Robust and Accurate Object Detection via Self-Knowledge Distillation

Related tags

Deep Learningudfa
Overview

Robust and Accurate Object Detection via Self-Knowledge Distillation

paper:https://arxiv.org/abs/2111.07239

Environments

  • Python 3.7
  • Cuda 10.1
  • Prepare dependency

Notes: We revise MMCV to adapt adversarial algorithms. Therefore we suggest that you prepare environments strictly as follows:

conda create -n udfa python=3.7
conda activate udfa
sh prepare_env.sh

Prepare datasets

  • VOC0712, download from http://host.robots.ox.ac.uk/pascal/VOC/, and place it under data directory

  • COCO2017, download from https://cocodataset.org/#download, and place it under data directory

  • The structure of datasets is shown as follows:

    structure of dataset

Train

VOC dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_std.py 
    cd work_dirs/gflv2_r34_fpn_voc_std
    cp epoch_12.pth ../../weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa with advprop on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss1.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_mixbn.py --load-from weights/gflv2_r34_voc_pre.pth
    

COCO dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_std.py 
    cd work_dirs/gflv2_r34_fpn_coco_std
    cp epoch_12.pth ../../weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using udfa on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_kdss.py --load-from weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_mixbn.py --load-from weights/gflv2_r34_coco_pre.pth
    

Test

  • Evlauate the clean AP or adversarial robustness on PASCAL_VOC 2007 test set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_voc_std.py  --checkpoint weights/gflv2_r34_voc_pre.pth --num_steps 0 --step_size 2 --eval mAP
    
  • Evlauate the clean AP or adversarial robustness on COCO 2017val set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_coco_std.py  --checkpoint weights/gflv2_r34_coco_pre.pth --num_steps 0 --step_size 2 --eval bbox
    

Acknowledgement

Our project is based on ImageCorruptions, MMDetection and MMCV.

Owner
Weipeng Xu
Weipeng Xu
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022