Robust and Accurate Object Detection via Self-Knowledge Distillation

Related tags

Deep Learningudfa
Overview

Robust and Accurate Object Detection via Self-Knowledge Distillation

paper:https://arxiv.org/abs/2111.07239

Environments

  • Python 3.7
  • Cuda 10.1
  • Prepare dependency

Notes: We revise MMCV to adapt adversarial algorithms. Therefore we suggest that you prepare environments strictly as follows:

conda create -n udfa python=3.7
conda activate udfa
sh prepare_env.sh

Prepare datasets

  • VOC0712, download from http://host.robots.ox.ac.uk/pascal/VOC/, and place it under data directory

  • COCO2017, download from https://cocodataset.org/#download, and place it under data directory

  • The structure of datasets is shown as follows:

    structure of dataset

Train

VOC dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_std.py 
    cd work_dirs/gflv2_r34_fpn_voc_std
    cp epoch_12.pth ../../weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa with advprop on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss1.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_mixbn.py --load-from weights/gflv2_r34_voc_pre.pth
    

COCO dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_std.py 
    cd work_dirs/gflv2_r34_fpn_coco_std
    cp epoch_12.pth ../../weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using udfa on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_kdss.py --load-from weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_mixbn.py --load-from weights/gflv2_r34_coco_pre.pth
    

Test

  • Evlauate the clean AP or adversarial robustness on PASCAL_VOC 2007 test set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_voc_std.py  --checkpoint weights/gflv2_r34_voc_pre.pth --num_steps 0 --step_size 2 --eval mAP
    
  • Evlauate the clean AP or adversarial robustness on COCO 2017val set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_coco_std.py  --checkpoint weights/gflv2_r34_coco_pre.pth --num_steps 0 --step_size 2 --eval bbox
    

Acknowledgement

Our project is based on ImageCorruptions, MMDetection and MMCV.

Owner
Weipeng Xu
Weipeng Xu
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022