Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

Related tags

Deep LearningS2VC
Overview

S2VC

Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In this paper, we proposed S2VC which utilizes Self-Supervised pretrained representation to provide the latent phonetic structure of the utterance from the source speaker and the spectral features of the utterance from the target speaker.

The following is the overall model architecture.

Model architecture

For the audio samples, please refer to our demo page.

Usage

You can download the pretrained model as well as the vocoder following the link under Releases section on the sidebar.

The whole project was developed using Python 3.8, torch 1.7.1, and the pretrained model, as well as the vocoder, were turned to TorchScript, so it's not guaranteed to be backward compatible. You can install the dependencies with

pip install -r requirements.txt

If you encounter any problems while installing fairseq, please refer to pytorch/fairseq for the installation instruction.

Self-Supervised representations

Wav2vec2

In our implementation, we're using Wav2Vec 2.0 Base w/o finetuning which is trained on LibriSpeech. You can download the checkpoint wav2vec_small.pt from pytorch/fairseq.

APC(Autoregressive Predictive Coding), CPC(Contrastive Predictive Coding)

These two representations are extracted using this speech toolkit S3PRL. You can check how to extract various representations from that repo.

Vocoder

The WaveRNN-based neural vocoder is from yistLin/universal-vocoder which is based on the paper, Towards achieving robust universal neural vocoding.

Voice conversion with pretrained models

You can convert an utterance from the source speaker with multiple utterances from the target speaker by preparing a conversion pairs information file in YAML format, like

# pairs_info.yaml
pair1:
    source: VCTK-Corpus/wav48/p225/p225_001.wav
    target:
        - VCTK-Corpus/wav48/p227/p227_001.wav
pair2:
    source: VCTK-Corpus/wav48/p225/p225_001.wav
    target:
        - VCTK-Corpus/wav48/p227/p227_002.wav
        - VCTK-Corpus/wav48/p227/p227_003.wav
        - VCTK-Corpus/wav48/p227/p227_004.wav

And convert multiple pairs at the same time, e.g.

python convert_batch.py \
    -w <WAV2VEC_PATH> \
    -v <VOCODER_PATH> \
    -c <CHECKPOINT_PATH> \
    -s <SOURCE_FEATURE_NAME> \
    -r <REFERENCE_FEATURE_NAME> \
    pairs_info.yaml \
    outputs # the output directory of conversion results

After the conversion, the output directory, outputs, will be containing

pair1.wav
pair1.mel.png
pair1.attn.png
pair2.wav
pair2.mel.png
pair2.attn.png

Train from scratch

Preprocessing

You can preprocess multiple corpora by passing multiple paths. But each path should be the directory that directly contains the speaker directories. And you have to specify the feature you want to extract. Currently, we support apc, cpc, wav2vec2, and timit_posteriorgram. i.e.

python3 preprocess.py
    VCTK-Corpus/wav48 \
    <SECOND_Corpus_PATH> \ # more corpus if you want
    <FEATURE_NAME> \
    <WAV2VEC_PATH> \
    processed/<FEATURE_NAME>  # the output directory of preprocessed features

After preprocessing, the output directory will be containing:

metadata.json
utterance-000x7gsj.tar
utterance-00wq7b0f.tar
utterance-01lpqlnr.tar
...

You may need to preprocess multiple times for different features. i.e.

python3 preprocess.py
    VCTK-Corpus/wav48 apc <WAV2VEC_PATH> processed/apc
python3 preprocess.py
    VCTK-Corpus/wav48 cpc <WAV2VEC_PATH> processed/cpc
    ...

Then merge the metadata of different features.

i.e.

python3 merger.py processed

Training

python train.py processed
    --save_dir ./ckpts \
    -s <SOURCE_FEATURE_NAME> \
    -r <REFERENCE_FEATURE_NAME>

You can further specify --preload for preloading all training data into RAM to boost training speed. If --comment is specified, e.g. --comment CPC-CPC, the training logs will be placed under a newly created directory like, logs/2020-02-02_12:34:56_CPC-CPC, otherwise there won't be any logging. For more details, you can refer to the usage by python train.py -h.

You might also like...
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

The PASS dataset: pretrained models and how to get the data -  PASS: Pictures without humAns for Self-Supervised Pretraining
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time. [CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Comments
  • Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl

    Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl

    Running convert_batch.py throws ValueError: Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl that originates from https://github.com/howard1337/S2VC/blob/8a6dcebc052424c41c62be0b22cb581258c5b4aa/data/feature_extract.py#L18

    File "convert_batch.py", line 61, in main
    src_feat_model = FeatureExtractor(src_feat_name, wav2vec_path, device)
    File "/deepmind/experiments/howard1337/s2vc/data/feature_extract.py", line 18, in __init__
    torch.hub.load("s3prl/s3prl:f2114342ff9e813e18a580fa41418aee9925414e", feature_name, refresh=True).eval().to(device)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 402, in load
    repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, verbose, skip_validation)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 190, in _get_cache_or_reload
    _validate_not_a_forked_repo(repo_owner, repo_name, branch)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 160, in _validate_not_a_forked_repo
    raise ValueError(f'Cannot find {branch} in https://github.com/{repo_owner}/{repo_name}. '
    ValueError: Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl. If it's a commit from a forked repo, please call hub.load() with forked repo directly.
    

    Any idea on how to solve this?

    opened by jerrymatjila 1
  • Could you provide ppg-extracting code?

    Could you provide ppg-extracting code?

    Dear author,

    In your paper, you mentioned you extracted ppg and SSL features by s3prl toolkit. However, I cannot find in s3prl on how to extract ppg. Could you provide the code or guideline on extracting ppgs? Thanks a lot!
    
    opened by hongchengzhu 0
  • What are vocoder-ckpt-*.pt?

    What are vocoder-ckpt-*.pt?

    You release the following vocoder checkpoints:

    vocoder-ckpt-apc.pt
    vocoder-ckpt-cpc.pt
    vocoder-ckpt-wav2vec2.pt
    

    What are they?

    Are they vocoders fine-tuned on the output of a particular model? I didn't see that described in the paper. Why is this needed, if the S2VC output is a mel? If it's because different models produce different mels, do you use vocoder-ckpt-cpc.pt when target model is cpc? And if so, how did you do the fine-tuning?

    opened by turian 0
  • Training of other features (apc, timit_posteriorgram etc.) do not work

    Training of other features (apc, timit_posteriorgram etc.) do not work

    I have tried training with other than the cpc feature on my prepared corpus. However, the training script fails when the loss function (train.py , line 69). I found that the size of the output vector out is hard-coded, which is inconsistent with the size of the target Mel spectrogram of other features.

    The size of some vectors of the model are:

    • apc case: Input dim: 512, Reference dim: 512, Target dim: 240
    • cpc case: Input dim: 256, Reference dim: 256, Target dim: 80

    I prepared the input feature vectors by using preprocess.py, e.g. python .\preprocess.py (my own corpus) apc .\checkpoints\wav2vec_small.pt processed/apc.

    I have modified the model by changing the size of the vectors and can run train.py now. In the model.py, __init__() of S2VC function, I replace 80 with a function argument and pass the size of Mel vector size. But I cannot determine the modification is appropriate, for I am not familiar with NLP.

    convert_batch.py with pre-trained models works well as you described in README.md.

    Other details of my situation are:

    • Windows 10, PowerShell
    • pytorch 1.7.1 + cu110
    • torchaudio 0.7.1
    • sox 1.4.1
    • tqdm 4.42.0
    • librosa 0.8.1
    opened by sage-git 0
Releases(v1.0)
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022