Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

Related tags

Deep LearningS2VC
Overview

S2VC

Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In this paper, we proposed S2VC which utilizes Self-Supervised pretrained representation to provide the latent phonetic structure of the utterance from the source speaker and the spectral features of the utterance from the target speaker.

The following is the overall model architecture.

Model architecture

For the audio samples, please refer to our demo page.

Usage

You can download the pretrained model as well as the vocoder following the link under Releases section on the sidebar.

The whole project was developed using Python 3.8, torch 1.7.1, and the pretrained model, as well as the vocoder, were turned to TorchScript, so it's not guaranteed to be backward compatible. You can install the dependencies with

pip install -r requirements.txt

If you encounter any problems while installing fairseq, please refer to pytorch/fairseq for the installation instruction.

Self-Supervised representations

Wav2vec2

In our implementation, we're using Wav2Vec 2.0 Base w/o finetuning which is trained on LibriSpeech. You can download the checkpoint wav2vec_small.pt from pytorch/fairseq.

APC(Autoregressive Predictive Coding), CPC(Contrastive Predictive Coding)

These two representations are extracted using this speech toolkit S3PRL. You can check how to extract various representations from that repo.

Vocoder

The WaveRNN-based neural vocoder is from yistLin/universal-vocoder which is based on the paper, Towards achieving robust universal neural vocoding.

Voice conversion with pretrained models

You can convert an utterance from the source speaker with multiple utterances from the target speaker by preparing a conversion pairs information file in YAML format, like

# pairs_info.yaml
pair1:
    source: VCTK-Corpus/wav48/p225/p225_001.wav
    target:
        - VCTK-Corpus/wav48/p227/p227_001.wav
pair2:
    source: VCTK-Corpus/wav48/p225/p225_001.wav
    target:
        - VCTK-Corpus/wav48/p227/p227_002.wav
        - VCTK-Corpus/wav48/p227/p227_003.wav
        - VCTK-Corpus/wav48/p227/p227_004.wav

And convert multiple pairs at the same time, e.g.

python convert_batch.py \
    -w <WAV2VEC_PATH> \
    -v <VOCODER_PATH> \
    -c <CHECKPOINT_PATH> \
    -s <SOURCE_FEATURE_NAME> \
    -r <REFERENCE_FEATURE_NAME> \
    pairs_info.yaml \
    outputs # the output directory of conversion results

After the conversion, the output directory, outputs, will be containing

pair1.wav
pair1.mel.png
pair1.attn.png
pair2.wav
pair2.mel.png
pair2.attn.png

Train from scratch

Preprocessing

You can preprocess multiple corpora by passing multiple paths. But each path should be the directory that directly contains the speaker directories. And you have to specify the feature you want to extract. Currently, we support apc, cpc, wav2vec2, and timit_posteriorgram. i.e.

python3 preprocess.py
    VCTK-Corpus/wav48 \
    <SECOND_Corpus_PATH> \ # more corpus if you want
    <FEATURE_NAME> \
    <WAV2VEC_PATH> \
    processed/<FEATURE_NAME>  # the output directory of preprocessed features

After preprocessing, the output directory will be containing:

metadata.json
utterance-000x7gsj.tar
utterance-00wq7b0f.tar
utterance-01lpqlnr.tar
...

You may need to preprocess multiple times for different features. i.e.

python3 preprocess.py
    VCTK-Corpus/wav48 apc <WAV2VEC_PATH> processed/apc
python3 preprocess.py
    VCTK-Corpus/wav48 cpc <WAV2VEC_PATH> processed/cpc
    ...

Then merge the metadata of different features.

i.e.

python3 merger.py processed

Training

python train.py processed
    --save_dir ./ckpts \
    -s <SOURCE_FEATURE_NAME> \
    -r <REFERENCE_FEATURE_NAME>

You can further specify --preload for preloading all training data into RAM to boost training speed. If --comment is specified, e.g. --comment CPC-CPC, the training logs will be placed under a newly created directory like, logs/2020-02-02_12:34:56_CPC-CPC, otherwise there won't be any logging. For more details, you can refer to the usage by python train.py -h.

You might also like...
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

The PASS dataset: pretrained models and how to get the data -  PASS: Pictures without humAns for Self-Supervised Pretraining
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time. [CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Comments
  • Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl

    Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl

    Running convert_batch.py throws ValueError: Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl that originates from https://github.com/howard1337/S2VC/blob/8a6dcebc052424c41c62be0b22cb581258c5b4aa/data/feature_extract.py#L18

    File "convert_batch.py", line 61, in main
    src_feat_model = FeatureExtractor(src_feat_name, wav2vec_path, device)
    File "/deepmind/experiments/howard1337/s2vc/data/feature_extract.py", line 18, in __init__
    torch.hub.load("s3prl/s3prl:f2114342ff9e813e18a580fa41418aee9925414e", feature_name, refresh=True).eval().to(device)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 402, in load
    repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, verbose, skip_validation)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 190, in _get_cache_or_reload
    _validate_not_a_forked_repo(repo_owner, repo_name, branch)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 160, in _validate_not_a_forked_repo
    raise ValueError(f'Cannot find {branch} in https://github.com/{repo_owner}/{repo_name}. '
    ValueError: Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl. If it's a commit from a forked repo, please call hub.load() with forked repo directly.
    

    Any idea on how to solve this?

    opened by jerrymatjila 1
  • Could you provide ppg-extracting code?

    Could you provide ppg-extracting code?

    Dear author,

    In your paper, you mentioned you extracted ppg and SSL features by s3prl toolkit. However, I cannot find in s3prl on how to extract ppg. Could you provide the code or guideline on extracting ppgs? Thanks a lot!
    
    opened by hongchengzhu 0
  • What are vocoder-ckpt-*.pt?

    What are vocoder-ckpt-*.pt?

    You release the following vocoder checkpoints:

    vocoder-ckpt-apc.pt
    vocoder-ckpt-cpc.pt
    vocoder-ckpt-wav2vec2.pt
    

    What are they?

    Are they vocoders fine-tuned on the output of a particular model? I didn't see that described in the paper. Why is this needed, if the S2VC output is a mel? If it's because different models produce different mels, do you use vocoder-ckpt-cpc.pt when target model is cpc? And if so, how did you do the fine-tuning?

    opened by turian 0
  • Training of other features (apc, timit_posteriorgram etc.) do not work

    Training of other features (apc, timit_posteriorgram etc.) do not work

    I have tried training with other than the cpc feature on my prepared corpus. However, the training script fails when the loss function (train.py , line 69). I found that the size of the output vector out is hard-coded, which is inconsistent with the size of the target Mel spectrogram of other features.

    The size of some vectors of the model are:

    • apc case: Input dim: 512, Reference dim: 512, Target dim: 240
    • cpc case: Input dim: 256, Reference dim: 256, Target dim: 80

    I prepared the input feature vectors by using preprocess.py, e.g. python .\preprocess.py (my own corpus) apc .\checkpoints\wav2vec_small.pt processed/apc.

    I have modified the model by changing the size of the vectors and can run train.py now. In the model.py, __init__() of S2VC function, I replace 80 with a function argument and pass the size of Mel vector size. But I cannot determine the modification is appropriate, for I am not familiar with NLP.

    convert_batch.py with pre-trained models works well as you described in README.md.

    Other details of my situation are:

    • Windows 10, PowerShell
    • pytorch 1.7.1 + cu110
    • torchaudio 0.7.1
    • sox 1.4.1
    • tqdm 4.42.0
    • librosa 0.8.1
    opened by sage-git 0
Releases(v1.0)
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022