End-To-End Crowdsourcing

Overview

End-To-End Crowdsourcing

Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment analysis. LTNet is adapted from "Facial Expression Recognition with Inconsistently Annotated Datasets" to text data. It encompasses a simple attention based neural network and utilizes confusion matrices as a noise reduction technique. For comparison, the traditional ground truth estimators "Fast-Dawid-Skene" and "MACE" are applied.

This codebase was used in both "End-to-End Annotator Bias Approximation on Crowdsourced Single-Label Sentiment Analysis" and "Deep End-to-End Learning for Noisy Annotations and Crowdsourcing in Natural Language Processing".

Training

This is an example training procedure for the TripAdvisor dataset. The dataset and solver objects are initialized before a standard LTNet model is trained for 300 epochs.

import torch
import pytz
import datetime

from datasets.tripadvisor import TripAdvisorDataset
from solver import Solver
from utils import *

# gpu
DEVICE = torch.device('cuda')

# cpu
# DEVICE = torch.device('cpu')

label_dim = 2
annotator_dim = 2
loss = 'nll'
one_dataset_one_annotator = False
dataset = TripAdvisorDataset(device=DEVICE, one_dataset_one_annotator=one_dataset_one_annotator)

lr = 1e-5
batch_size = 64
current_time = datetime.datetime.now(pytz.timezone('Europe/Berlin')).strftime("%Y%m%d-%H%M%S")
hyperparams = {'batch': batch_size, 'lr': lr}
writer = get_writer(path=f'../logs/test',
                    current_time=current_time, params=hyperparams)

solver = Solver(dataset, lr, batch_size, 
                writer=writer,
                device=DEVICE,
                label_dim=label_dim,
                annotator_dim=annotator_dim)

model, f1 = solver.fit(epochs=300, return_f1=True,
                       deep_randomization=True)

These initialization and training steps of a network are abstracted away into src/training. Scripts with many more details on training procedures and different configurations can be found in src/scripts. All are best loaded into an ipython terminal with the %load command.

Databases

How to use them from outside the src folder?

It makes us able to refer to the classes properly.

import sys
sys.path.append("src/")

Pass the root folders of the embeddings and the data.

from datasets.emotion import EmotionDataset

dataset = EmotionDataset(
        text_processor='word2vec', 
        text_processor_filters=['lowercase', 'stopwordsfilter'],
        embedding_path='data/embeddings/word2vec/glove.6B.50d.txt',
        data_path='data/'
        )

Datasets are available at "TripAdvisor", "Emotion" and "Organic".

TripAdvisor Dataset

code

from datasets.tripadvisor import TripAdvisorDataset

dataset = TripAdvisorDataset(text_processor='word2vec', text_processor_filters=['lowercase', 'stopwordsfilter'])

print(f'Dataset is in {dataset.mode} mode')
print(f'Train-Validation split is {dataset.train_val_split}')
print(f'1st train datapoint: {dataset[0]}')

output

Dataset is in train mode
Train-Validation split is 0.8
1st train datapoint: {'label': 0, 'annotator':'f', 'rating': 4, 'text': 'I realise ...', 'embedding': array}

Emotion Dataset

Every headline has been annotated on each emotion. One can select one emotion as the label by the set_emotion method.

code

from datasets.emotion import EmotionDataset

dataset = TripAdvisorDataset(text_processor='word2vec', text_processor_filters=['lowercase', 'stopwordsfilter'])

print(f'Dataset is in {dataset.mode} mode')
print(f'Train-Validation split is {dataset.train_val_split}')
dataset.set_emotion('anger')
print(f'1st train datapoint: {dataset[0]}') # select anger_label as label
dataset.set_emotion('disgust')
print(f'1st train datapoint: {dataset[0]}') # select disgust_label as label

output

Dataset is in train mode
Train-Validation split is 0.8
1st train datapoint: {'label': 0, 'annotator':'xxx1', 'anger_response':0, 'anger_label':0, 'anger_gold'=1, 'disgust_response':0 ... 'text': 'I realise ...', ... 'embedding': array}
1st train datapoint: {'label': 1, 'annotator':'xxx1', 'anger_response':0, 'anger_label':0, 'anger_gold'=1, 'disgust_response':0 ... 'text': 'I realise ...', ... 'embedding': array}
Owner
Andreas Koch
Robotics Graduate @ TU Munich
Andreas Koch
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023