Predicting Student Attentiveness using OpenCV

Overview

Predicting-Student-Attentiveness-using-OpenCV

The model will predict if a student is attentive or not through facial parameter received through the student's webcam using Face Detection, Drowsiness Detection, and Head Pose Estimation

Libraries Used (To be installed to execute program)

  1. cv2
  2. dlib
  3. numpy
  4. mediapipe
  5. imutils
  6. scipy
  7. glob

Information :

  1. data : The data folder contains test images for cam_calibration.py and a '.dat' file used for placing landmarks on the face using dlib library.

  2. face detectors : This folder contains two face detector models that were used to implement Drowsiness Detection and Head Pose Estimation.

  3. helpermod : This folder contains two helper modules used for implementing Head Pose Estimation.

  4. Drowsiness_Detection.py : The main program for implementing Drowsiness Detection to predict Student Attentiveness.

  5. cam_calibration.py : This program is to be run before running headposedlib.py to implement Head Pose Estimation correctly.

  6. headposedlib.py : This contains the main program for implementing Head Pose Estimation to predict Student Attentiveness.

Steps to run the Program :

  1. Install all the required library packages in your python environment.
  2. Drowsiness_Detection.py can then be run. A new window will popup with the webcamera turning on and the video will displayed on this window. The program will detect face and check if the eyes are opened or closed to predict if the student is attentive or not attentive. To exit the program , press the ESC key.
  3. Run cam_calibration.py, this will give the approximate focal length as output. This focal length has to be modified in the headposedlib.py for correct implementation.
  4. In headposedlib.py, modify the focal length 'f' to the nearest intger value received as output of the cam_calibration.py program.

image

  1. After updating the focal length 'f', run headposedlib.py. A new window will popup with the webcamera turning on and the video will displayed on this window.The program will estimate the position of the head to predict if the student is attentive or not attentive. To exit the program, press the ESC key.
Note : The face detector models used to run Drowsiness_Detection.py and headposedlib.py are given for reference.

Both these programs can be run after the required libraries are installed. Both these programs will open a new window with your video capture through the webcam and will detect the face on the video. To exit these programs, press the ESC key.

Project Done By

Johann Kyle Pinto
Reg No. : 20BKT0009

Owner
Johann Pinto
Johann Pinto
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022