[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

Overview

LBYL-Net

This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021.


Getting Started

Prerequisites

  • python 3.7
  • pytorch 10.0
  • cuda 10.0
  • gcc 4.92 or above

Installation

  1. Then clone the repo and install dependencies.
    git clone https://github.com/svip-lab/LBYLNet.git
    cd LBYLNet
    pip install requirements.txt 
  2. You also need to install our landmark feature convolution:
    cd ext
    git clone https://github.com/hbb1/landmarkconv.git
    cd landmarkconv/lib/layers
    python setup.py install --user
  3. We follow dataset structure DMS and FAOA. For convience, we have pack them togather, including ReferitGame, RefCOCO, RefCOCO+, RefCOCOg.
    bash data/refer/download_data.sh ./data/refer
  4. download the generated index files and place them in ./data/refer. Available at [Gdrive], [One Drive] .
  5. download the pretained model of YOLOv3.
    wget -P ext https://pjreddie.com/media/files/yolov3.weights

Training and Evaluation

By default, we use 2 gpus and batchsize 64 with DDP (distributed data-parallel). We have provided several configurations and training log for reproducing our results. If you want to use different hyperparameters or models, you may create configs for yourself. Here are examples:

  • For distributed training with gpus :

    CUDA_VISIBLE_DEVICES=0,1 python train.py lbyl_lstm_referit_batch64  --workers 8 --distributed --world_size 1  --dist_url "tcp://127.0.0.1:60006"
  • If you use single gpu or won't use distributed training (make sure to adjust the batchsize in the corresponding config file to match your devices):

    CUDA_VISIBLE_DEVICES=0, python train.py lbyl_lstm_referit_batch64  --workers 8
  • For evaluation:

    CUDA_VISIBLE_DEVICES=0, python evaluate.py lbyl_lstm_referit_batch64 --testiter 100 --split val

Trained Models

We provide the our retrained models with this re-organized codebase and provide their checkpoints and logs for reproducing the results. To use our trained models, download them from the [Gdrive] and save them into directory cache. Then the file path is expected to be <LBYLNet dir>/cache/nnet/<config>/<dataset>/<config>_100.pkl

Notice: The reproduced performances are occassionally higher or lower (within a reasonable range) than the results reported in the paper.

In this repo, we provide the peformance of our LBYL-Nets below. You can also find the details on <LBYLNet dir>/results and <LBYLNet dir>/logs.

  • Performance on ReferitGame ([email protected]).

    Dataset Langauge Split Papar Reproduce
    ReferitGame LSTM test 65.48 65.98
    BERT test 67.47 68.48
  • Performance on RefCOCO ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO LSTM
    testA 82.18 82.48
    testB 71.91 71.76
    BERT
    testA 82.91 82.82
    testB 74.15 72.82
  • Performance on RefCOCO+ ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO+ LSTM val 66.64 66.71
    testA 73.21 72.63
    testB 56.23 55.88
    BERT val 68.64 68.76
    testA 73.38 73.73
    testB 59.49 59.62
  • Performance on RefCOCOg ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCOg LSTM val 58.72 60.03
    BERT val 62.70 63.20

Demo

We also provide demo scripts to test if the repo is corretly installed. After installing the repo and download the pretained weights, you should be able to use the LBYL-Net to ground your own images.

python demo.py

you can change the model, image or phrase in the demo.py. You will see the output image in imgs/demo_out.jpg.

#!/usr/bin/env python
import cv2
import torch
from core.test.test import _visualize
from core.groundors import Net 
# pick one model
cfg_file = "lbyl_bert_unc+_batch64"
detector = Net(cfg_file, iter=100)
# inference
image = cv2.imread('imgs/demo.jpeg')
phrase = 'the green gaint'
bbox = detector(image, phrase)
_visualize(image, pred_bbox=bbox, phrase=phrase, save_path='imgs/demo_out.jpg', color=(1, 174, 245), draw_phrase=True)

Input:

Output:


Acknowledgements

This repo is organized as CornerNet-Lite and the code is partially from FAOA (e.g. data preparation) and MAttNet (e.g. LSTM). We thank for their great works.


Citations:

If you use any part of this repo in your research, please cite our paper:

@InProceedings{huang2021look,
      title={Look Before You Leap: Learning Landmark Features for One-Stage Visual Grounding}, 
      author={Huang, Binbin and Lian, Dongze and Luo, Weixin and Gao, Shenghua},
      booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month = {June},
      year={2021},
}
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022