[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

Overview

LBYL-Net

This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021.


Getting Started

Prerequisites

  • python 3.7
  • pytorch 10.0
  • cuda 10.0
  • gcc 4.92 or above

Installation

  1. Then clone the repo and install dependencies.
    git clone https://github.com/svip-lab/LBYLNet.git
    cd LBYLNet
    pip install requirements.txt 
  2. You also need to install our landmark feature convolution:
    cd ext
    git clone https://github.com/hbb1/landmarkconv.git
    cd landmarkconv/lib/layers
    python setup.py install --user
  3. We follow dataset structure DMS and FAOA. For convience, we have pack them togather, including ReferitGame, RefCOCO, RefCOCO+, RefCOCOg.
    bash data/refer/download_data.sh ./data/refer
  4. download the generated index files and place them in ./data/refer. Available at [Gdrive], [One Drive] .
  5. download the pretained model of YOLOv3.
    wget -P ext https://pjreddie.com/media/files/yolov3.weights

Training and Evaluation

By default, we use 2 gpus and batchsize 64 with DDP (distributed data-parallel). We have provided several configurations and training log for reproducing our results. If you want to use different hyperparameters or models, you may create configs for yourself. Here are examples:

  • For distributed training with gpus :

    CUDA_VISIBLE_DEVICES=0,1 python train.py lbyl_lstm_referit_batch64  --workers 8 --distributed --world_size 1  --dist_url "tcp://127.0.0.1:60006"
  • If you use single gpu or won't use distributed training (make sure to adjust the batchsize in the corresponding config file to match your devices):

    CUDA_VISIBLE_DEVICES=0, python train.py lbyl_lstm_referit_batch64  --workers 8
  • For evaluation:

    CUDA_VISIBLE_DEVICES=0, python evaluate.py lbyl_lstm_referit_batch64 --testiter 100 --split val

Trained Models

We provide the our retrained models with this re-organized codebase and provide their checkpoints and logs for reproducing the results. To use our trained models, download them from the [Gdrive] and save them into directory cache. Then the file path is expected to be <LBYLNet dir>/cache/nnet/<config>/<dataset>/<config>_100.pkl

Notice: The reproduced performances are occassionally higher or lower (within a reasonable range) than the results reported in the paper.

In this repo, we provide the peformance of our LBYL-Nets below. You can also find the details on <LBYLNet dir>/results and <LBYLNet dir>/logs.

  • Performance on ReferitGame ([email protected]).

    Dataset Langauge Split Papar Reproduce
    ReferitGame LSTM test 65.48 65.98
    BERT test 67.47 68.48
  • Performance on RefCOCO ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO LSTM
    testA 82.18 82.48
    testB 71.91 71.76
    BERT
    testA 82.91 82.82
    testB 74.15 72.82
  • Performance on RefCOCO+ ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCO+ LSTM val 66.64 66.71
    testA 73.21 72.63
    testB 56.23 55.88
    BERT val 68.64 68.76
    testA 73.38 73.73
    testB 59.49 59.62
  • Performance on RefCOCOg ([email protected]).

    Dataset Langauge Split Papar Reproduce
    RefCOCOg LSTM val 58.72 60.03
    BERT val 62.70 63.20

Demo

We also provide demo scripts to test if the repo is corretly installed. After installing the repo and download the pretained weights, you should be able to use the LBYL-Net to ground your own images.

python demo.py

you can change the model, image or phrase in the demo.py. You will see the output image in imgs/demo_out.jpg.

#!/usr/bin/env python
import cv2
import torch
from core.test.test import _visualize
from core.groundors import Net 
# pick one model
cfg_file = "lbyl_bert_unc+_batch64"
detector = Net(cfg_file, iter=100)
# inference
image = cv2.imread('imgs/demo.jpeg')
phrase = 'the green gaint'
bbox = detector(image, phrase)
_visualize(image, pred_bbox=bbox, phrase=phrase, save_path='imgs/demo_out.jpg', color=(1, 174, 245), draw_phrase=True)

Input:

Output:


Acknowledgements

This repo is organized as CornerNet-Lite and the code is partially from FAOA (e.g. data preparation) and MAttNet (e.g. LSTM). We thank for their great works.


Citations:

If you use any part of this repo in your research, please cite our paper:

@InProceedings{huang2021look,
      title={Look Before You Leap: Learning Landmark Features for One-Stage Visual Grounding}, 
      author={Huang, Binbin and Lian, Dongze and Luo, Weixin and Gao, Shenghua},
      booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month = {June},
      year={2021},
}
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Facebook Research 605 Jan 02, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022