SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

Overview

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

PyTorch implementation of SnapMix | paper

Method Overview

SnapMix

Cite

@inproceedings{huang2021snapmix,
    title={SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data},
    author={Shaoli Huang, Xinchao Wang, and Dacheng Tao},
    year={2021},
    booktitle={AAAI Conference on Artificial Intelligence},
}

Setup

Install Package Dependencies

torch
torchvision 
PyYAML
easydict
tqdm
scikit-learn
efficientnet_pytorch
pandas
opencv

Datasets

create a soft link to the dataset directory

CUB dataset

ln -s /your-path-to/CUB-dataset data/cub

Car dataset

ln -s /your-path-to/Car-dataset data/car

Aircraft dataset

ln -s /your-path-to/Aircraft-dataset data/aircraft

Training

Training with Imagenet pre-trained weights

1. Baseline and Baseline+

To train a model on CUB dataset using the Resnet-50 backbone,

python main.py # baseline

python main.py --midlevel # baseline+

To train model on other datasets using other network backbones, you can specify the following arguments:

--netname: name of network architectures (support 4 network families: ResNet,DenseNet,InceptionV3,EfficientNet)

--dataset: dataset name

For example,

python main.py --netname resnet18 --dataset cub # using the Resnet-18 backbone on CUB dataset

python main.py --netname efficientnet-b0 --dataset cub # using the EfficientNet-b0 backbone on CUB dataset

python main.py --netname inceptoinV3 --dataset aircraft # using the inceptionV3 backbone on Aircraft dataset

2. Training with mixing augmentation

Applying SnapMix in training ( we used the hyperparameter values (prob=1., beta=5) for SnapMix in most of the experiments.):

python main.py --mixmethod snapmix --beta 5 --netname resnet50 --dataset cub # baseline

python main.py --mixmethod snapmix --beta 5 --netname resnet50 --dataset cub --midlevel # baseline+

Applying other augmentation methods (currently support cutmix,cutout,and mixup) in training:

python main.py --mixmethod cutmix --beta 3 --netname resnet50 --dataset cub # training with CutMix

python main.py --mixmethod mixup --prob 0.5 --netname resnet50 --dataset cub # training with MixUp

3. Results

ResNet architecture.

Backbone Method CUB Car Aircraft
Resnet-18 Baseline 82.35% 91.15% 87.80%
Resnet-18 Baseline + SnapMix 84.29% 93.12% 90.17%
Resnet-34 Baseline 84.98% 92.02% 89.92%
Resnet-34 Baseline + SnapMix 87.06% 93.95% 92.36%
Resnet-50 Baseline 85.49% 93.04% 91.07%
Resnet-50 Baseline + SnapMix 87.75% 94.30% 92.08%
Resnet-101 Baseline 85.62% 93.09% 91.59%
Resnet-101 Baseline + SnapMix 88.45% 94.44% 93.74%
Resnet-50 Baseline+ 87.13% 93.80% 91.68%
Resnet-50 Baseline+ + SnapMix 88.70% 95.00% 93.24%
Resnet-101 Baseline+ 87.81% 93.94% 91.85%
Resnet-101 Baseline+ + SnapMix 89.32% 94.84% 94.05%

InceptionV3 architecture.

Backbone Method CUB
InceptionV3 Baseline 82.22%
InceptionV3 Baseline + SnapMix 85.54%

DenseNet architecture.

Backbone Method CUB
DenseNet121 Baseline 84.23%
DenseNet121 Baseline + SnapMix 87.42%

Training from scratch

To train a model without using ImageNet pretrained weights:

python main.py --mixmethod snapmix --prob 0.5 --netname resnet18 --dataset cub --pretrained 0 # resnet-18 backbone

python main.py --mixmethod snapmix --prob 0.5 --netname resnet50 --dataset cub --pretrained 0 # resnet-50 backbone

2. Results

Backbone Method CUB
Resnet-18 Baseline 64.98%
Resnet-18 Baseline + SnapMix 70.31%
Resnet-50 Baseline 66.92%
Resnet-50 Baseline + SnapMix 72.17%
Owner
DavidHuang
DavidHuang
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022