SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

Overview

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

PyTorch implementation of SnapMix | paper

Method Overview

SnapMix

Cite

@inproceedings{huang2021snapmix,
    title={SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data},
    author={Shaoli Huang, Xinchao Wang, and Dacheng Tao},
    year={2021},
    booktitle={AAAI Conference on Artificial Intelligence},
}

Setup

Install Package Dependencies

torch
torchvision 
PyYAML
easydict
tqdm
scikit-learn
efficientnet_pytorch
pandas
opencv

Datasets

create a soft link to the dataset directory

CUB dataset

ln -s /your-path-to/CUB-dataset data/cub

Car dataset

ln -s /your-path-to/Car-dataset data/car

Aircraft dataset

ln -s /your-path-to/Aircraft-dataset data/aircraft

Training

Training with Imagenet pre-trained weights

1. Baseline and Baseline+

To train a model on CUB dataset using the Resnet-50 backbone,

python main.py # baseline

python main.py --midlevel # baseline+

To train model on other datasets using other network backbones, you can specify the following arguments:

--netname: name of network architectures (support 4 network families: ResNet,DenseNet,InceptionV3,EfficientNet)

--dataset: dataset name

For example,

python main.py --netname resnet18 --dataset cub # using the Resnet-18 backbone on CUB dataset

python main.py --netname efficientnet-b0 --dataset cub # using the EfficientNet-b0 backbone on CUB dataset

python main.py --netname inceptoinV3 --dataset aircraft # using the inceptionV3 backbone on Aircraft dataset

2. Training with mixing augmentation

Applying SnapMix in training ( we used the hyperparameter values (prob=1., beta=5) for SnapMix in most of the experiments.):

python main.py --mixmethod snapmix --beta 5 --netname resnet50 --dataset cub # baseline

python main.py --mixmethod snapmix --beta 5 --netname resnet50 --dataset cub --midlevel # baseline+

Applying other augmentation methods (currently support cutmix,cutout,and mixup) in training:

python main.py --mixmethod cutmix --beta 3 --netname resnet50 --dataset cub # training with CutMix

python main.py --mixmethod mixup --prob 0.5 --netname resnet50 --dataset cub # training with MixUp

3. Results

ResNet architecture.

Backbone Method CUB Car Aircraft
Resnet-18 Baseline 82.35% 91.15% 87.80%
Resnet-18 Baseline + SnapMix 84.29% 93.12% 90.17%
Resnet-34 Baseline 84.98% 92.02% 89.92%
Resnet-34 Baseline + SnapMix 87.06% 93.95% 92.36%
Resnet-50 Baseline 85.49% 93.04% 91.07%
Resnet-50 Baseline + SnapMix 87.75% 94.30% 92.08%
Resnet-101 Baseline 85.62% 93.09% 91.59%
Resnet-101 Baseline + SnapMix 88.45% 94.44% 93.74%
Resnet-50 Baseline+ 87.13% 93.80% 91.68%
Resnet-50 Baseline+ + SnapMix 88.70% 95.00% 93.24%
Resnet-101 Baseline+ 87.81% 93.94% 91.85%
Resnet-101 Baseline+ + SnapMix 89.32% 94.84% 94.05%

InceptionV3 architecture.

Backbone Method CUB
InceptionV3 Baseline 82.22%
InceptionV3 Baseline + SnapMix 85.54%

DenseNet architecture.

Backbone Method CUB
DenseNet121 Baseline 84.23%
DenseNet121 Baseline + SnapMix 87.42%

Training from scratch

To train a model without using ImageNet pretrained weights:

python main.py --mixmethod snapmix --prob 0.5 --netname resnet18 --dataset cub --pretrained 0 # resnet-18 backbone

python main.py --mixmethod snapmix --prob 0.5 --netname resnet50 --dataset cub --pretrained 0 # resnet-50 backbone

2. Results

Backbone Method CUB
Resnet-18 Baseline 64.98%
Resnet-18 Baseline + SnapMix 70.31%
Resnet-50 Baseline 66.92%
Resnet-50 Baseline + SnapMix 72.17%
Owner
DavidHuang
DavidHuang
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website β€’ Colab β€’ Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer πŸ‘‰ [Preprint] πŸ‘ˆ Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
πŸ”₯3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022