A 1.3B text-to-image generation model trained on 14 million image-text pairs

Overview

minDALL-E on Conceptual Captions

minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for non-commercial purposes.

a painting of a bird in the style of asian painting a photo of san francisco's golden gate bridge in black and white tone

Environment Setup

  • Basic setup
PyTorch == 1.8.0
CUDA >= 10.1
  • Other packages
pip install -r requirements.txt

Model Checkpoint

  • Model structure (two-stage autoregressive model)
    • Stage1: Unlike the original DALL-E [1], we replace Discrete VAE with VQGAN [2] to generate high-quality samples effectively. We slightly fine-tune vqgan_imagenet_f16_16384, provided by the official VQGAN repository, on FFHQ [3] as well as ImageNet.
    • Stage2: We train our 1.3B transformer from scratch on 14 million image-text pairs from CC3M [4] and CC12M [5]. For the more detailed model spec, please see configs/dalle-1.3B.yaml.
  • You can download the pretrained models including the tokenizer from this link. This will require about 5GB space.

Sampling

  • Given a text prompt, the code snippet below generates candidate images and re-ranks them using OpenAI's CLIP [6].
  • This has been tested under a single V100 of 32GB memory. In the case of using GPUs with limited memory, please lower down num_candidates to avoid OOM.
from matplotlib import pyplot as plt
import clip
from dalle.models import Dalle
from dalle.utils.utils import set_seed, clip_score

device = 'cuda:0'
set_seed(0)

prompt = "A painting of a monkey with sunglasses in the frame"
model = Dalle.from_pretrained('minDALL-E/1.3B')  # This will automatically download the pretrained model.
model.to(device=device)

# Sampling
images = model.sampling(prompt=prompt,
                        top_k=256, # It is recommended that top_k is set lower than 256.
                        top_p=None,
                        softmax_temperature=1.0,
                        num_candidates=96,
                        device=device).cpu().numpy()
images = np.transpose(images, (0, 2, 3, 1))

# CLIP Re-ranking
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
model_clip.to(device=device)
rank = clip_score(prompt=prompt,
                  images=images,
                  model_clip=model_clip,
                  preprocess_clip=preprocess_clip,
                  device=device)

# Plot images
images = images[rank]
plt.imshow(images[0])
plt.show()

Samples (Top-K=256, Temperature=1.0)

  • "a painting of a {cat, dog} with sunglasses in the frame"

  • "a large {pink, black} elephant walking on the beach"

  • "Eiffel tower on a {desert, mountain}"

Quantitative Results

  • We have validated minDALL-E on the CC3M validation set (in-distribution evaluation) and MS-COCO (zero-shot evaluation).
  • For CC3M, we measure the cosine similarity between image and text representations from the pretrained CLIP model (ViT-B/32), referred to as CLIP-score.
  • For MS-COCO, we compute FID between 30K generated and real samples from MS-COCO 2017, where we randomly choose 30K captions from COCO as in DALL-E. We select the best out of 32 candidates by CLIP re-ranking.
Model CC3M:CLIP-score (higher is better) MS-COCO:FID-30K (lower is better)
VQGAN [2] 0.20 -
ImageBART [7] 0.23 -
DALL-E [1] - 27.5
minDALL-E 0.26 14.7

Transfer Learning Examples

  • minDALL-E, which is pre-trained on noisy text supervisions, could be transferable to class-conditional and unconditional generation tasks. To validate this, we simply fine-tune it on ImageNet over 8 epochs in the case of class-conditional generation and unconditional generation.
  • The commands below fine-tune the pretrained DALL-E. It takes about 36 hours on 8 V100 GPUs.
# unconditinoal image generation for imagenet (256x256)
python examples/transfer_learning_ex.py -d=configs/transfer-imagenet-uncond-gen.yaml
                                        -u=[MODEL_CKPT]
                                        -r=[RESULT_PATH]
                                        --n-gpus=[NUM_GPUS]

# class-conditinoal image generation for imagenet (256x256)
python examples/transfer_learning_ex.py -d=configs/transfer-imagenet-clscond-gen.yaml
                                        -u=[MODEL_CKPT]
                                        -r=[RESULT_PATH]
                                        --n-gpus=[NUM_GPUS]
  • We compute FID-50K between 50K generated samples and all ImageNet training samples, where we use top-k=256 and softmax temperature=1.0 for generation. All results are obtained without the rejection sampling. Interestingly, our model achieves very competitive performance with baselines, even though minDALL-E is fine-tuned in a few epochs.
Model Params FID-50K(class-cond.) FID-50K(uncond.)
VQ-GAN 1.4B 15.78 -
ImageBART 3.5B 21.19 -
minDALL-E 1.3B 15.55 37.58

BibTex

If you find this repository useful in your research, please cite:

@misc{kakaobrain2021minDALL-E,
  title         = {minDALL-E on Conceptual Captions},
  author        = {Saehoon Kim, Sanghun Cho, Chiheon Kim, Doyup Lee, and Woonhyuk Baek},
  year          = {2021},
  howpublished  = {\url{https://github.com/kakaobrain/minDALL-E}},
}

References

  • [1] Ramesh et al. Zero-Shot Text-to-Image Generation, ICML 2021.
  • [2] Esser et al. Taming Transformers for High-Resolution Image Synthesis, CVPR 2021.
  • [3] Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019.
  • [4] Sharma et al. Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning, ACL 2018.
  • [5] Changpinyo et al. Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts, CVPR 2021.
  • [6] Radford et al. Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
  • [7] Esser et al. ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis, NeurIPS 2021.
  • [8] https://github.com/karpathy/minGPT

Licenses

  • The source codes are licensed under Apache 2.0 License.
  • The stage2 pretrained weights are licensed under CC-BY-NC-SA 4.0 License.

Contact

We hope that minDALL-E helps various projects in research-oriented institutes and startups. If you would like to collaborate with us or share a feedback, please e-mail to us, [email protected]

Limitations

Although minDALL-E is trained on a small set (14M image-text pairs), this might be vulnerable to malicious attacks from the prompt engineering to generate socially unacceptable images. If you obersve these images, please report the "prompt" and "generated images" to us.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023