A 1.3B text-to-image generation model trained on 14 million image-text pairs

Overview

minDALL-E on Conceptual Captions

minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for non-commercial purposes.

a painting of a bird in the style of asian painting a photo of san francisco's golden gate bridge in black and white tone

Environment Setup

  • Basic setup
PyTorch == 1.8.0
CUDA >= 10.1
  • Other packages
pip install -r requirements.txt

Model Checkpoint

  • Model structure (two-stage autoregressive model)
    • Stage1: Unlike the original DALL-E [1], we replace Discrete VAE with VQGAN [2] to generate high-quality samples effectively. We slightly fine-tune vqgan_imagenet_f16_16384, provided by the official VQGAN repository, on FFHQ [3] as well as ImageNet.
    • Stage2: We train our 1.3B transformer from scratch on 14 million image-text pairs from CC3M [4] and CC12M [5]. For the more detailed model spec, please see configs/dalle-1.3B.yaml.
  • You can download the pretrained models including the tokenizer from this link. This will require about 5GB space.

Sampling

  • Given a text prompt, the code snippet below generates candidate images and re-ranks them using OpenAI's CLIP [6].
  • This has been tested under a single V100 of 32GB memory. In the case of using GPUs with limited memory, please lower down num_candidates to avoid OOM.
from matplotlib import pyplot as plt
import clip
from dalle.models import Dalle
from dalle.utils.utils import set_seed, clip_score

device = 'cuda:0'
set_seed(0)

prompt = "A painting of a monkey with sunglasses in the frame"
model = Dalle.from_pretrained('minDALL-E/1.3B')  # This will automatically download the pretrained model.
model.to(device=device)

# Sampling
images = model.sampling(prompt=prompt,
                        top_k=256, # It is recommended that top_k is set lower than 256.
                        top_p=None,
                        softmax_temperature=1.0,
                        num_candidates=96,
                        device=device).cpu().numpy()
images = np.transpose(images, (0, 2, 3, 1))

# CLIP Re-ranking
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
model_clip.to(device=device)
rank = clip_score(prompt=prompt,
                  images=images,
                  model_clip=model_clip,
                  preprocess_clip=preprocess_clip,
                  device=device)

# Plot images
images = images[rank]
plt.imshow(images[0])
plt.show()

Samples (Top-K=256, Temperature=1.0)

  • "a painting of a {cat, dog} with sunglasses in the frame"

  • "a large {pink, black} elephant walking on the beach"

  • "Eiffel tower on a {desert, mountain}"

Quantitative Results

  • We have validated minDALL-E on the CC3M validation set (in-distribution evaluation) and MS-COCO (zero-shot evaluation).
  • For CC3M, we measure the cosine similarity between image and text representations from the pretrained CLIP model (ViT-B/32), referred to as CLIP-score.
  • For MS-COCO, we compute FID between 30K generated and real samples from MS-COCO 2017, where we randomly choose 30K captions from COCO as in DALL-E. We select the best out of 32 candidates by CLIP re-ranking.
Model CC3M:CLIP-score (higher is better) MS-COCO:FID-30K (lower is better)
VQGAN [2] 0.20 -
ImageBART [7] 0.23 -
DALL-E [1] - 27.5
minDALL-E 0.26 14.7

Transfer Learning Examples

  • minDALL-E, which is pre-trained on noisy text supervisions, could be transferable to class-conditional and unconditional generation tasks. To validate this, we simply fine-tune it on ImageNet over 8 epochs in the case of class-conditional generation and unconditional generation.
  • The commands below fine-tune the pretrained DALL-E. It takes about 36 hours on 8 V100 GPUs.
# unconditinoal image generation for imagenet (256x256)
python examples/transfer_learning_ex.py -d=configs/transfer-imagenet-uncond-gen.yaml
                                        -u=[MODEL_CKPT]
                                        -r=[RESULT_PATH]
                                        --n-gpus=[NUM_GPUS]

# class-conditinoal image generation for imagenet (256x256)
python examples/transfer_learning_ex.py -d=configs/transfer-imagenet-clscond-gen.yaml
                                        -u=[MODEL_CKPT]
                                        -r=[RESULT_PATH]
                                        --n-gpus=[NUM_GPUS]
  • We compute FID-50K between 50K generated samples and all ImageNet training samples, where we use top-k=256 and softmax temperature=1.0 for generation. All results are obtained without the rejection sampling. Interestingly, our model achieves very competitive performance with baselines, even though minDALL-E is fine-tuned in a few epochs.
Model Params FID-50K(class-cond.) FID-50K(uncond.)
VQ-GAN 1.4B 15.78 -
ImageBART 3.5B 21.19 -
minDALL-E 1.3B 15.55 37.58

BibTex

If you find this repository useful in your research, please cite:

@misc{kakaobrain2021minDALL-E,
  title         = {minDALL-E on Conceptual Captions},
  author        = {Saehoon Kim, Sanghun Cho, Chiheon Kim, Doyup Lee, and Woonhyuk Baek},
  year          = {2021},
  howpublished  = {\url{https://github.com/kakaobrain/minDALL-E}},
}

References

  • [1] Ramesh et al. Zero-Shot Text-to-Image Generation, ICML 2021.
  • [2] Esser et al. Taming Transformers for High-Resolution Image Synthesis, CVPR 2021.
  • [3] Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019.
  • [4] Sharma et al. Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning, ACL 2018.
  • [5] Changpinyo et al. Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts, CVPR 2021.
  • [6] Radford et al. Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
  • [7] Esser et al. ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis, NeurIPS 2021.
  • [8] https://github.com/karpathy/minGPT

Licenses

  • The source codes are licensed under Apache 2.0 License.
  • The stage2 pretrained weights are licensed under CC-BY-NC-SA 4.0 License.

Contact

We hope that minDALL-E helps various projects in research-oriented institutes and startups. If you would like to collaborate with us or share a feedback, please e-mail to us, [email protected]

Limitations

Although minDALL-E is trained on a small set (14M image-text pairs), this might be vulnerable to malicious attacks from the prompt engineering to generate socially unacceptable images. If you obersve these images, please report the "prompt" and "generated images" to us.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022