This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Overview

Hand Cricket

Table of Content

Overview

This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python. Behind the game is a CNN model that is trained to identify hand sign for numbers 0,1,2,3,4,5 & 6. For those who have never played this game, the rules are explained below.

The Game in action

hand-cricket.mov

Installation

  • You need Python (3.6) & git (to clone this repo)
  • git clone [email protected]:abhinavnayak11/Hand-Cricket.git . : Clone this repo
  • cd path/to/Hand-Cricket : cd into the project folder
  • conda env create -f environment.yml : Create a virtual env with all the dependencies
  • conda activate comp-vision : activate the virtual env
  • python src/hand-cricket.py : Run the script

Game rules

Hand signs

  • You can play numbers 0, 1, 2, 3, 4, 5, 6. Their hand sign are shown here

Toss

  • You can choose either odd or even (say you choose odd)
  • Both the players play a number (say players play 3 & 6). Add those numbers (3+6=9).
  • Check if the sum is odd or even. (9 is odd)
  • If the result is same as what you have chosen, you have won the toss, else you have lost. (9 is odd, you chose odd, hence you win)

The Game

  • The person who wins the toss is the batsman, the other player is the bowler. (In the next version of the game, the toss winner will be allowed to chose batting/bowling)
  • Scoring Runs:
    • Both players play a number.
    • The batsman's number is added to his score only when the numbers are different.
    • There is special power given to 0. If batsman plays 0 and bowler plays any number but 0, bowler's number is added to batsman's score
  • Getting out:
    • Batsman gets out when both the players play the same number. Even if both the numbers are 0.
  • Winning/Losing:
    • After both the players have finished their innings, the person scoring more runs wins the game

Game code : hand-cricket.py


Project Details

  1. Data Collection :
    • After failing to find a suitable dataset, I created my own dataset using my phone camera.
    • The dataset contains a total of 1848 images. To ensure generality (i.e prevent overfitting to one type of hand in one type of environment) images were taken with 4 persons, in 6 different lighting conditions, in 3 different background.
    • Sample of images post augmentations are shown below, images
    • Data can be found uploaded at : github | kaggle. Data collection code : collect-data.py
  2. Data preprocessing :
    • A Pytorch dataset was created to handle the preprocessing of the image dataset (code : dataset.py).
    • Images were augmented before training. Following augmentations were used : Random Rotation, Random Horizontal Flip and Normalization. All the images were resized to (128x128).
    • Images were divided into training and validation set. Training set was used to train the model, whereas validation set helped validate the model performance.
  3. Model training :
    • Different pretrained models(resent18, densenet121 etc, which are pre-trained on the ImageNet dataset) from pytorch library were used to train on this dataset. Except the last 2 layers, all the layers were frozen and then trained. With this the pre-trained model helps extracting useful features and the last 2 layers will be fine-tuned to my dataset.
    • Learning rate for training the model was chosen with trial and error. For each model, learning rate was different.
    • Of all the models trained, densnet121 performed the best, with a validation accuracy of 0.994.
    • Training the model : train.py, engine.py, training-notebook

Future Scope

  • Although, this was a fun application, the dataset can be used in applications like sign language recognition.


License: MIT

Owner
Abhinav R Nayak
Aspiring data scientist
Abhinav R Nayak
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022