Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

Overview

NeurIPS 2020 SEVIR

Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology

Requirements

To test pretrained models and train on single GPU, this requires

Distributed (multi-GPU) training of these models requires

  • Horovod 0.19.0 or higher for distributed training. See Horovod

To visualize results with statelines as is done in the paper, a geospatial plotting library is required. We recommend either of the following:

  • basemap
  • cartopy

To run the rainymotion benchmark, you'll also need to install this module. See https://rainymotion.readthedocs.io/en/latest/

Downloading pretrained models

To download the models trained in the paper, run the following

cd models/
python download_models.py

See the notebooks directory for how to apply these models to some sample test data.

Downloading SEVIR

Download information and additional resources for SEVIR data are available at https://registry.opendata.aws/sevir/.

To download, install AWS CLI, and download all of SEVIR (~1TB) to your current directory run

aws s3 sync --no-sign-request s3://sevir .

Extracting training/testing datasets

The models implemented in the paper are implemented on training data collected prior to June 1, 2019, and testing data collected after June 1, 2019. These datasets can be extrated from SEVIR by running the following scripts (one for nowcasting, and one for synrad). Depending on your CPU and speed of your filesystem, these scripts may take several hours to run.

cd src/data

# Generates nowcast training & testing datasets
python make_nowcast_dataset.py --sevir_data ../../data/sevir --sevir_catalog ../../data/CATALOG.csv --output_location ../../data/interim/

# Generate synrad training & testing datasets
python make_synrad_dataset.py --sevir_data ../../data/sevir --sevir_catalog ../../data/CATALOG.csv --output_location ../../data/interim/

Testing pretrained models

Pretrained models used in the paper are located under models/. To run test metrics on these datasets, run the test_*.py scripts and point to the pretrained model, and the test dataset. To test, we recommend setting num_test to a small number, and increasing thereafter (not specifying will use all test data). This shows an example

# Test a trained synrad model
python test_synrad.py  --num_test 1000 --model models/synrad_mse.h5   --test_data data/interim/synrad_testing.h5  -output test_output.csv

Also check out the examples in notebooks/ for how to run pretrained models and visualize results.

Model training

This section describes how to train the nowcast and synthetic weather radar (synrad) models yourself. Models discussed in the paper were trained using distributed training over 8 NVIDIA Volta V100 GPUs with 32GB of memory. However the code in this repo is setup to train on a single GPU.

The training datasets are pretty large, and running on the full dataset requires a significant amount of RAM. We suggest that you first test the model with --num_train set to a low number to start, and increase this to the limits of your system. Training with all the data may require writing your own generator that batches the data so that it fits in memory.

Training nowcast

To train the nowcast model, make sure the nowcast_training.h5 file is created using the previous steps. Below we set num_train to be only 1024, but this should be increased for better results. Results described in the paper were generated with num_train = 44,760. When training the model with the mse loss, the largest batch size possible is 32 and for all other cases, a maximum batch size of 4 must be used. Larger batch sizes will result in out-of-memory errors on the GPU. There are four choices of loss functions configured:

MSE Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 32 --loss_fn  mse  --logdir logs/mse_`date +yymmddHHMMSS`

Style and Content Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 4 --loss_fn  vgg  --logdir logs/mse_`date +yymmddHHMMSS`

MSE + Style and Content Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 4 --loss_fn  mse+vgg  --logdir logs/mse_`date +yymmddHHMMSS`

Conditional GAN Loss:

python train_nowcast.py   --num_train 1024  --nepochs 25  --batch_size 32 --loss_fn  cgan  --logdir logs/mse_`date +yymmddHHMMSS`

Each of these will write several files into the date-stamped directory in logs/, including tracking of metrics, and a model saved after each epoch. Run python train_nowcast.py -h for additional input parameters that can be specified.

Training synrad

To train synrad, make sure the synrad_training.h5 file is created using the previous step above. Below we set num_train to be only 10,000, but this should be increased for better results. There are three choices of loss functions configured:

MSE Loss:

python train_synrad.py   --num_train 10000  --nepochs 100  --loss_fn  mse  --loss_weights 1.0  --logdir logs/mse_`date +yymmddHHMMSS`

MSE+Content Loss:

python train_synrad.py   --num_train 10000  --nepochs 100  --loss_fn  mse+vgg  --loss_weights 1.0 1.0 --logdir logs/mse_vgg_`date +yymmddHHMMSS`

cGAN + MAE Loss:

python train_synrad.py   --num_train 10000  --nepochs 100  --loss_fn  gan+mae  --loss_weights 1.0 --logdir logs/gan_mae_`date +yymmddHHMMSS`

Each of these will write several files into the date-stamped directory in logs/, including tracking of metrics, and a model saved after each epoch.

Analyzing results

The notebooks under notebooks contain code for anaylzing the results of training, and for visualizing the results on sample test cases.

Owner
USAF - MIT Artificial Intelligence Accelerator
The official GitHub of the USAF/MIT AI Accelerator
USAF - MIT Artificial Intelligence Accelerator
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022