Official repository for Natural Image Matting via Guided Contextual Attention

Overview

GCA-Matting: Natural Image Matting via Guided Contextual Attention

The source codes and models of Natural Image Matting via Guided Contextual Attention which will appear in AAAI-20.

Matting results on test data from alphamatting.com with trimap-user.

Requirements

Packages:

  • torch >= 1.1
  • tensorboardX
  • numpy
  • opencv-python
  • toml
  • easydict
  • pprint

GPU memory >= 8GB for inference on Adobe Composition-1K testing set

Models

The models pretrained on Adobe Image Matting Dataset are covered by Adobe Deep Image Mattng Dataset License Agreement and can only be used and distributed for noncommercial purposes.

Model Name Training Data File Size MSE SAD Grad Conn
ResNet34_En_nomixup ISLVRC 2012 166 MB N/A N/A N/A N/A
gca-dist Adobe Matting Dataset 96.5 MB 0.0091 35.28 16.92 32.53
gca-dist-all-data Adobe Matting Dataset
+ Composition-1K
96.5 MB - - - -
  • ResNet34_En_nomixup: Model of the customized ResNet-34 backbone trained on ImageNet. Save to ./pretrain/. The training codes of ResNet34_En_nomixup and more variants will be released as an independent repository later. You need this checkpoint only if you want to train your own matting model.
  • gca-dist: Model of the GCA Matting in Table 2 in the paper. Save to ./checkpoints/gca-dist/.
  • gca-dist-all-data: Model of the GCA Matting trained on both Adobe Image Matting Dataset and the Composition-1K testing set for alphamatting.com online benchmark. Save to ./checkpoints/gca-dist-all-data/.

(We removed optimizer state_dict from gca-dist.pth and gca-dist-all-data.pth to save space. So you cannot resume the training from these two models.)

Run a Demo on alphamatting.com Testing Set

python demo.py \
--config=config/gca-dist-all-data.toml \
--checkpoint=checkpoints/gca-dist-all-data/gca-dist-all-data.pth \
--image-dir=demo/input_lowres \
--trimap-dir=demo/trimap_lowres/Trimap3 \
--output=demo/pred/Trimap3/

This will load the configuration from config and save predictions in output/config_checkpoint/*. You can reproduce our alphamatting.com submission by this command.

Train and Evaluate on Adobe Image Matting Dataset

Data Preparation

Since each ground truth alpha image in Composition-1K is shared by 20 merged images, we first copy and rename these alpha images to have the same name as their trimaps. If your ground truth images are in ./Combined_Dataset/Test_set/Adobe-licensed images/alpha, run following command:

./copy_testing_alpha.sh Combined_Dataset/Test_set/Adobe-licensed\ images

New alpha images will be generated in Combined_Dataset/Test_set/Adobe-licensed images/alpha_copy

Configuration

TOML files are used as configurations in ./config/. You can find the definition and options in ./utils/config.py.

Training

Default training requires 4 GPUs with 11GB memory, and the batch size is 10 for each GPU. First, you need to set your training and validation data path in configuration and dataloader will merge training images on-the-fly:

[data]
train_fg = ""
train_alpha = ""
train_bg = ""
test_merged = ""
test_alpha = ""
test_trimap = ""

You can train the model by

./train.sh

or

OMP_NUM_THREADS=2 python -m torch.distributed.launch \
--nproc_per_node=4 main.py \
--config=config/gca-dist.toml

For single GPU training, set dist=false in your *.toml and run

python main.py --config=config/*.toml

Evaluation

To evaluate our model or your own model on Composition-1K, set the path of Composition-1K testing and model name in the configuration file *.toml:

[test]
merged = "./data/test/merged"
alpha = "./data/test/alpha_copy"
trimap = "./data/test/trimap"
# this will load ./checkpoint/*/gca-dist.pth
checkpoint = "gca-dist" 

and run the command:

./test.sh

or

python main.py \
--config=config/gca-dist.toml \
--phase=test

The predictions will be save to** ./prediction by default, and you can evaluate the results by the MATLAB file ./DIM_evaluation_code/evaluate.m in which the evaluate functions are provided by Deep Image Matting. Please do not report the quantitative results calculated by our python code like ./utils/evaluate.py or this test.sh in your paper or project. The Grad and Conn functions of our reimplementation are not exactly the same as MATLAB version.

Citation

If you find this work or code useful for your research, please cite:

@inproceedings{li2020natural,
  title={Natural image matting via guided contextual attention},
  author={Li, Yaoyi and Lu, Hongtao},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  pages={11450--11457},
  year={2020}
}
Owner
Li Yaoyi
Li Yaoyi
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022