Official repository for Natural Image Matting via Guided Contextual Attention

Overview

GCA-Matting: Natural Image Matting via Guided Contextual Attention

The source codes and models of Natural Image Matting via Guided Contextual Attention which will appear in AAAI-20.

Matting results on test data from alphamatting.com with trimap-user.

Requirements

Packages:

  • torch >= 1.1
  • tensorboardX
  • numpy
  • opencv-python
  • toml
  • easydict
  • pprint

GPU memory >= 8GB for inference on Adobe Composition-1K testing set

Models

The models pretrained on Adobe Image Matting Dataset are covered by Adobe Deep Image Mattng Dataset License Agreement and can only be used and distributed for noncommercial purposes.

Model Name Training Data File Size MSE SAD Grad Conn
ResNet34_En_nomixup ISLVRC 2012 166 MB N/A N/A N/A N/A
gca-dist Adobe Matting Dataset 96.5 MB 0.0091 35.28 16.92 32.53
gca-dist-all-data Adobe Matting Dataset
+ Composition-1K
96.5 MB - - - -
  • ResNet34_En_nomixup: Model of the customized ResNet-34 backbone trained on ImageNet. Save to ./pretrain/. The training codes of ResNet34_En_nomixup and more variants will be released as an independent repository later. You need this checkpoint only if you want to train your own matting model.
  • gca-dist: Model of the GCA Matting in Table 2 in the paper. Save to ./checkpoints/gca-dist/.
  • gca-dist-all-data: Model of the GCA Matting trained on both Adobe Image Matting Dataset and the Composition-1K testing set for alphamatting.com online benchmark. Save to ./checkpoints/gca-dist-all-data/.

(We removed optimizer state_dict from gca-dist.pth and gca-dist-all-data.pth to save space. So you cannot resume the training from these two models.)

Run a Demo on alphamatting.com Testing Set

python demo.py \
--config=config/gca-dist-all-data.toml \
--checkpoint=checkpoints/gca-dist-all-data/gca-dist-all-data.pth \
--image-dir=demo/input_lowres \
--trimap-dir=demo/trimap_lowres/Trimap3 \
--output=demo/pred/Trimap3/

This will load the configuration from config and save predictions in output/config_checkpoint/*. You can reproduce our alphamatting.com submission by this command.

Train and Evaluate on Adobe Image Matting Dataset

Data Preparation

Since each ground truth alpha image in Composition-1K is shared by 20 merged images, we first copy and rename these alpha images to have the same name as their trimaps. If your ground truth images are in ./Combined_Dataset/Test_set/Adobe-licensed images/alpha, run following command:

./copy_testing_alpha.sh Combined_Dataset/Test_set/Adobe-licensed\ images

New alpha images will be generated in Combined_Dataset/Test_set/Adobe-licensed images/alpha_copy

Configuration

TOML files are used as configurations in ./config/. You can find the definition and options in ./utils/config.py.

Training

Default training requires 4 GPUs with 11GB memory, and the batch size is 10 for each GPU. First, you need to set your training and validation data path in configuration and dataloader will merge training images on-the-fly:

[data]
train_fg = ""
train_alpha = ""
train_bg = ""
test_merged = ""
test_alpha = ""
test_trimap = ""

You can train the model by

./train.sh

or

OMP_NUM_THREADS=2 python -m torch.distributed.launch \
--nproc_per_node=4 main.py \
--config=config/gca-dist.toml

For single GPU training, set dist=false in your *.toml and run

python main.py --config=config/*.toml

Evaluation

To evaluate our model or your own model on Composition-1K, set the path of Composition-1K testing and model name in the configuration file *.toml:

[test]
merged = "./data/test/merged"
alpha = "./data/test/alpha_copy"
trimap = "./data/test/trimap"
# this will load ./checkpoint/*/gca-dist.pth
checkpoint = "gca-dist" 

and run the command:

./test.sh

or

python main.py \
--config=config/gca-dist.toml \
--phase=test

The predictions will be save to** ./prediction by default, and you can evaluate the results by the MATLAB file ./DIM_evaluation_code/evaluate.m in which the evaluate functions are provided by Deep Image Matting. Please do not report the quantitative results calculated by our python code like ./utils/evaluate.py or this test.sh in your paper or project. The Grad and Conn functions of our reimplementation are not exactly the same as MATLAB version.

Citation

If you find this work or code useful for your research, please cite:

@inproceedings{li2020natural,
  title={Natural image matting via guided contextual attention},
  author={Li, Yaoyi and Lu, Hongtao},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  pages={11450--11457},
  year={2020}
}
Owner
Li Yaoyi
Li Yaoyi
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022