(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Overview

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Official implementation of the paper

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

CVPR 2022 [oral]

Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla

[arXiv]

We present MaGNet (Monocular and Geometric Network), a novel framework for fusing single-view depth probability with multi-view geometry, to improve the accuracy, robustness and efficiency of multi-view depth estimation. For each frame, MaGNet estimates a single-view depth probability distribution, parameterized as a pixel-wise Gaussian. The distribution estimated for the reference frame is then used to sample per-pixel depth candidates. Such probabilistic sampling enables the network to achieve higher accuracy while evaluating fewer depth candidates. We also propose depth consistency weighting for the multi-view matching score, to ensure that the multi-view depth is consistent with the single-view predictions. The proposed method achieves state-of-the-art performance on ScanNet, 7-Scenes and KITTI. Qualitative evaluation demonstrates that our method is more robust against challenging artifacts such as texture-less/reflective surfaces and moving objects.

Datasets

We evaluated MaGNet on ScanNet, 7-Scenes and KITTI

ScanNet

  • In order to download ScanNet, you should submit an agreement to the Terms of Use. Please follow the instructions in this link.
  • The folder should be organized as

/path/to/ScanNet
/path/to/ScanNet/scans
/path/to/ScanNet/scans/scene0000_00 ...
/path/to/ScanNet/scans_test
/path/to/ScanNet/scans_test/scene0707_00 ...

7-Scenes

  • Download all seven scenes (Chess, Fire, Heads, Office, Pumpkin, RedKitchen, Stairs) from this link.
  • The folder should be organized as:

/path/to/SevenScenes
/path/to/SevenScenes/chess ...

KITTI

  • Download raw data from this link.
  • Download depth maps from this link
  • The folder should be organized as:

/path/to/KITTI
/path/to/KITTI/rawdata
/path/to/KITTI/rawdata/2011_09_26 ...
/path/to/KITTI/train
/path/to/KITTI/train/2011_09_26_drive_0001_sync ...
/path/to/KITTI/val
/path/to/KITTI/val/2011_09_26_drive_0002_sync ...

Download model weights

Download model weights by

python ckpts/download.py

If some files are not downloaded properly, download them manually from this link and place the files under ./ckpts.

Install dependencies

We recommend using a virtual environment.

python3.6 -m venv --system-site-packages ./venv
source ./venv/bin/activate

Install the necessary dependencies by

python3.6 -m pip install -r requirements.txt

Test scripts

If you wish to evaluate the accuracy of our D-Net (single-view), run

python test_DNet.py ./test_scripts/dnet/scannet.txt
python test_DNet.py ./test_scripts/dnet/7scenes.txt
python test_DNet.py ./test_scripts/dnet/kitti_eigen.txt
python test_DNet.py ./test_scripts/dnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.1186 0.2070 0.0493 0.2708 0.1461 0.1086 0.0515 10.0098 0.8546 0.9703 0.9928 2.2352
7-Scenes 0.1339 0.2209 0.0549 0.2932 0.1677 0.1165 0.0566 12.8807 0.8308 0.9716 0.9948 2.7941
KITTI (eigen) 0.0605 1.1331 0.2086 2.4215 0.0921 0.0075 0.0261 8.4312 0.9602 0.9946 0.9989 2.6443
KITTI (official) 0.0629 1.1682 0.2541 2.4708 0.1021 0.0080 0.0270 9.5752 0.9581 0.9905 0.9971 1.7810

In order to evaluate the accuracy of the full pipeline (multi-view), run

python test_MaGNet.py ./test_scripts/magnet/scannet.txt
python test_MaGNet.py ./test_scripts/magnet/7scenes.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_eigen.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.0810 0.1466 0.0302 0.2098 0.1101 0.1055 0.0351 8.7686 0.9298 0.9835 0.9946 0.1454
7-Scenes 0.1257 0.2133 0.0552 0.2957 0.1639 0.1782 0.0527 13.6210 0.8552 0.9715 0.9935 1.5605
KITTI (eigen) 0.0535 0.9995 0.1623 2.1584 0.0826 0.0566 0.0235 7.4645 0.9714 0.9958 0.9990 1.8053
KITTI (official) 0.0503 0.9135 0.1667 1.9707 0.0848 0.2423 0.0219 7.9451 0.9769 0.9941 0.9979 1.4750

Training scripts

Coming soon

Citation

If you find our work useful in your research please consider citing our paper:

@InProceedings{Bae2022,
  title = {Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry}
  author = {Gwangbin Bae and Ignas Budvytis and Roberto Cipolla},
  booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2022}                         
}
Owner
Bae, Gwangbin
PhD student in Computer Vision @ University of Cambridge
Bae, Gwangbin
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022