(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Overview

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Official implementation of the paper

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

CVPR 2022 [oral]

Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla

[arXiv]

We present MaGNet (Monocular and Geometric Network), a novel framework for fusing single-view depth probability with multi-view geometry, to improve the accuracy, robustness and efficiency of multi-view depth estimation. For each frame, MaGNet estimates a single-view depth probability distribution, parameterized as a pixel-wise Gaussian. The distribution estimated for the reference frame is then used to sample per-pixel depth candidates. Such probabilistic sampling enables the network to achieve higher accuracy while evaluating fewer depth candidates. We also propose depth consistency weighting for the multi-view matching score, to ensure that the multi-view depth is consistent with the single-view predictions. The proposed method achieves state-of-the-art performance on ScanNet, 7-Scenes and KITTI. Qualitative evaluation demonstrates that our method is more robust against challenging artifacts such as texture-less/reflective surfaces and moving objects.

Datasets

We evaluated MaGNet on ScanNet, 7-Scenes and KITTI

ScanNet

  • In order to download ScanNet, you should submit an agreement to the Terms of Use. Please follow the instructions in this link.
  • The folder should be organized as

/path/to/ScanNet
/path/to/ScanNet/scans
/path/to/ScanNet/scans/scene0000_00 ...
/path/to/ScanNet/scans_test
/path/to/ScanNet/scans_test/scene0707_00 ...

7-Scenes

  • Download all seven scenes (Chess, Fire, Heads, Office, Pumpkin, RedKitchen, Stairs) from this link.
  • The folder should be organized as:

/path/to/SevenScenes
/path/to/SevenScenes/chess ...

KITTI

  • Download raw data from this link.
  • Download depth maps from this link
  • The folder should be organized as:

/path/to/KITTI
/path/to/KITTI/rawdata
/path/to/KITTI/rawdata/2011_09_26 ...
/path/to/KITTI/train
/path/to/KITTI/train/2011_09_26_drive_0001_sync ...
/path/to/KITTI/val
/path/to/KITTI/val/2011_09_26_drive_0002_sync ...

Download model weights

Download model weights by

python ckpts/download.py

If some files are not downloaded properly, download them manually from this link and place the files under ./ckpts.

Install dependencies

We recommend using a virtual environment.

python3.6 -m venv --system-site-packages ./venv
source ./venv/bin/activate

Install the necessary dependencies by

python3.6 -m pip install -r requirements.txt

Test scripts

If you wish to evaluate the accuracy of our D-Net (single-view), run

python test_DNet.py ./test_scripts/dnet/scannet.txt
python test_DNet.py ./test_scripts/dnet/7scenes.txt
python test_DNet.py ./test_scripts/dnet/kitti_eigen.txt
python test_DNet.py ./test_scripts/dnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.1186 0.2070 0.0493 0.2708 0.1461 0.1086 0.0515 10.0098 0.8546 0.9703 0.9928 2.2352
7-Scenes 0.1339 0.2209 0.0549 0.2932 0.1677 0.1165 0.0566 12.8807 0.8308 0.9716 0.9948 2.7941
KITTI (eigen) 0.0605 1.1331 0.2086 2.4215 0.0921 0.0075 0.0261 8.4312 0.9602 0.9946 0.9989 2.6443
KITTI (official) 0.0629 1.1682 0.2541 2.4708 0.1021 0.0080 0.0270 9.5752 0.9581 0.9905 0.9971 1.7810

In order to evaluate the accuracy of the full pipeline (multi-view), run

python test_MaGNet.py ./test_scripts/magnet/scannet.txt
python test_MaGNet.py ./test_scripts/magnet/7scenes.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_eigen.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.0810 0.1466 0.0302 0.2098 0.1101 0.1055 0.0351 8.7686 0.9298 0.9835 0.9946 0.1454
7-Scenes 0.1257 0.2133 0.0552 0.2957 0.1639 0.1782 0.0527 13.6210 0.8552 0.9715 0.9935 1.5605
KITTI (eigen) 0.0535 0.9995 0.1623 2.1584 0.0826 0.0566 0.0235 7.4645 0.9714 0.9958 0.9990 1.8053
KITTI (official) 0.0503 0.9135 0.1667 1.9707 0.0848 0.2423 0.0219 7.9451 0.9769 0.9941 0.9979 1.4750

Training scripts

Coming soon

Citation

If you find our work useful in your research please consider citing our paper:

@InProceedings{Bae2022,
  title = {Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry}
  author = {Gwangbin Bae and Ignas Budvytis and Roberto Cipolla},
  booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2022}                         
}
Owner
Bae, Gwangbin
PhD student in Computer Vision @ University of Cambridge
Bae, Gwangbin
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
MohammadReza Sharifi 27 Dec 13, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022