Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

Overview

AceNAS

This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in strategy provided in NNI.

Data Preparation

  1. Download our prepared data from Google Drive. The directory should look like this:
data
├── checkpoints
│   ├── acenas-m1.pth.tar
│   ├── acenas-m2.pth.tar
│   └── acenas-m3.pth.tar
├── gcn
│   ├── nasbench101_gt_all.pkl
│   ├── nasbench201cifar10_gt_all.pkl
│   ├── nasbench201_gt_all.pkl
│   ├── nasbench201imagenet_gt_all.pkl
│   ├── nds_amoeba_gt_all.pkl
│   ├── nds_amoebaim_gt_all.pkl
│   ├── nds_dartsfixwd_gt_all.pkl
│   ├── nds_darts_gt_all.pkl
│   ├── nds_dartsim_gt_all.pkl
│   ├── nds_enasfixwd_gt_all.pkl
│   ├── nds_enas_gt_all.pkl
│   ├── nds_enasim_gt_all.pkl
│   ├── nds_nasnet_gt_all.pkl
│   ├── nds_nasnetim_gt_all.pkl
│   ├── nds_pnasfixwd_gt_all.pkl
│   ├── nds_pnas_gt_all.pkl
│   ├── nds_pnasim_gt_all.pkl
│   ├── nds_supernet_evaluate_all_test1_amoeba.json
│   ├── nds_supernet_evaluate_all_test1_dartsfixwd.json
│   ├── nds_supernet_evaluate_all_test1_darts.json
│   ├── nds_supernet_evaluate_all_test1_enasfixwd.json
│   ├── nds_supernet_evaluate_all_test1_enas.json
│   ├── nds_supernet_evaluate_all_test1_nasnet.json
│   ├── nds_supernet_evaluate_all_test1_pnasfixwd.json
│   ├── nds_supernet_evaluate_all_test1_pnas.json
│   ├── supernet_evaluate_all_test1_nasbench101.json
│   ├── supernet_evaluate_all_test1_nasbench201cifar10.json
│   ├── supernet_evaluate_all_test1_nasbench201imagenet.json
│   └── supernet_evaluate_all_test1_nasbench201.json
├── nb201
│   ├── split-cifar100.txt
│   ├── split-cifar10-valid.txt
│   └── split-imagenet-16-120.txt
├── proxyless
│   ├── imagenet
│   │   ├── augment_files.txt
│   │   ├── test_files.txt
│   │   ├── train_files.txt
│   │   └── val_files.txt
│   ├── proxyless-84ms-train.csv
│   ├── proxyless-ws-results.csv
│   └── tunas-proxylessnas-search.csv
└── tunas
    ├── imagenet_valid_split_filenames.txt
    ├── random_architectures.csv
    └── searched_architectures.csv
  1. (Required for benchmark experiments) Download CIFAR-10, CIFAR-100, ImageNet-16-120 dataset and also put them under data.
data
├── cifar10
│   └── cifar-10-batches-py
│       ├── batches.meta
│       ├── data_batch_1
│       ├── data_batch_2
│       ├── data_batch_3
│       ├── data_batch_4
│       ├── data_batch_5
│       ├── readme.html
│       └── test_batch
├── cifar100
│   └── cifar-100-python
│       ├── meta
│       ├── test
│       └── train
└── imagenet16
    ├── train_data_batch_1
    ├── train_data_batch_10
    ├── train_data_batch_2
    ├── train_data_batch_3
    ├── train_data_batch_4
    ├── train_data_batch_5
    ├── train_data_batch_6
    ├── train_data_batch_7
    ├── train_data_batch_8
    ├── train_data_batch_9
    └── val_data
  1. (Required for ImageNet experiments) Prepare ImageNet. You can put it anywhere.

  2. (Optional) Copy tunas (https://github.com/google-research/google-research/tree/master/tunas) to a folder named tunas.

Evaluate pre-trained models.

We provide 3 checkpoints obtained from 3 different runs in data/checkpoints. Please evaluate them via the following command.

python -m tools.standalone.imagenet_eval acenas-m1 /path/to/your/imagenet
python -m tools.standalone.imagenet_eval acenas-m2 /path/to/your/imagenet
python -m tools.standalone.imagenet_eval acenas-m3 /path/to/your/imagenet

Train supernet

python -m tools.supernet.nasbench101 experiments/supernet/nasbench101.yml
python -m tools.supernet.nasbench201 experiments/supernet/nasbench201.yml
python -m tools.supernet.nds experiments/supernet/darts.yml
python -m tools.supernet.proxylessnas experiments/supernet/proxylessnas.yml

Please refer to experiments/supernet folder for more configurations.

Benchmark experiments

We've already provided weight-sharing results from supernet so that you do not have to train you own. The provided files can be found in json files located under data/gcn.

# pretrain
python -m gcn.benchmarks.pretrain data/gcn/supernet_evaluate_all_test1_${SEARCHSPACE}.json data/gcn/${SEARCHSPACE}_gt_all.pkl --metric_keys top1 flops params
# finetune
python -m gcn.benchmarks.train --use_train_samples --budget {budget} --test_dataset data/gcn/${SEARCHSPACE}_gt_all.pkl --iteration 5 \
    --loss lambdarank --gnn_type gcn --early_stop_patience 50 --learning_rate 0.005 --opt_type adam --wd 5e-4 --epochs 300 --bs 20 \
    --resume /path/to/previous/output.pt

Running baselines

BRP-NAS:

# pretrain
python -m gcn.benchmarks.pretrain data/gcn/supernet_evaluate_all_test1_${SEARCHSPACE}.json data/gcn/${SEARCHSPACE}_gt_all.pkl --metric_keys flops
# finetune
python -m gcn.benchmarks.train --use_train_samples --budget ${BUDGET} --test_dataset data/gcn/${SEARCHSPACE}_gt_all.pkl --iteration 5 \
    --loss brp --gnn_type brp --early_stop_patience 35 --learning_rate 0.00035 \
    --opt_type adamw --wd 5e-4 --epochs 250 --bs 64 --resume /path/to/previous/output.pt

Vanilla:

python -m gcn.benchmarks.train --use_train_samples --budget ${BUDGET} --test_dataset data/gcn/${SEARCHSPACE}_gt_all.pkl --iteration 1 \
    --loss mse --gnn_type vanilla --n_hidden 144 --learning_rate 2e-4 --opt_type adam --wd 1e-3 --epochs 300 --bs 10

ProxylessNAS search space

Train GCN

python -m gcn.proxyless.pretrain --metric_keys ws_accuracy simulated_pixel1_time_ms flops params
python -m gcn.proxyless.train --loss lambdarank --early_stop_patience 50 --learning_rate 0.002 --opt_type adam --wd 5e-4 --epochs 300 --bs 20 \
    --resume /path/to/previous/output.pth

Train final model

Validation set:

python -m torch.distributed.launch --nproc_per_node=16 \
    --use_env --module \
    tools.standalone.imagenet_train \
    --output "$OUTPUT_DIR" "$ARCH" "$IMAGENET_DIR" \
    -b 256 --lr 2.64 --warmup-lr 0.1 \
    --warmup-epochs 5 --epochs 90 --sched cosine --num-classes 1000 \
    --opt rmsproptf --opt-eps 1. --weight-decay 4e-5 -j 8 --dist-bn reduce \
    --bn-momentum 0.01 --bn-eps 0.001 --drop 0. --no-held-out-val

Test set:

python -m torch.distributed.launch --nproc_per_node=16 \
    --use_env --module \
    tools.standalone.imagenet_train \
    --output "$OUTPUT_DIR" "$ARCH" "$IMAGENET_DIR" \
    -b 256 --lr 2.64 --warmup-lr 0.1 \
    --warmup-epochs 9 --epochs 360 --sched cosine --num-classes 1000 \
    --opt rmsproptf --opt-eps 1. --weight-decay 4e-5 -j 8 --dist-bn reduce \
    --bn-momentum 0.01 --bn-eps 0.001 --drop 0.15
Owner
Yuge Zhang
Yuge Zhang
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022