SLAMP: Stochastic Latent Appearance and Motion Prediction

Overview

SLAMP: Stochastic Latent Appearance and Motion Prediction

Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Prediction (Adil Kaan Akan, Erkut Erdem, Aykut Erdem, Fatma Guney), accepted and presented at ICCV 2021.

Article

Preprint

Project Website

Pretrained Models

Requirements

All models were trained with Python 3.7.6 and PyTorch 1.4.0 using CUDA 10.1.

A list of required Python packages is available in the requirements.txt file.

Datasets

For preparations of datasets, we followed SRVP's code. Please follow the links below if you want to construct the datasets.

Stochastic Moving MNIST

KTH

BAIR

KITTI

For KITTI, you need to download the Raw KITTI dataset and extract the zip files. You can follow the official KITTI page.

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=310, h=92). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Cityscapes

For Cityscapes, you need to download leftImg8bit_sequence from the official Cityscapes page.

leftImg8bit_sequence contains 30-frame snippets (17Hz) surrounding each left 8-bit image (-19 | +10) from the train, val, and test sets (150000 images).

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=256, h=128). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Training

To train a new model, the script train.py should be used as follows:

Data directory ($DATA_DIR) and $SAVE_DIR must be given using options --data_root $DATA_DIR --log_dir $SAVE_DIR. To use GPU, you need to use --device flag.

  • for Stochastic Moving MNIST:
--n_past 5 --n_future 10 --n_eval 25 --z_dim_app 20 --g_dim_app 128 --z_dim_motion 20
--g_dim_motion 128 --last_frame_skip --running_avg --batch_size 32
  • for KTH:
--dataset kth --n_past 10 --n_future 10 --n_eval 40 --z_dim_app 50 --g_dim_app 128 --z_dim_motion 50 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20
  • for BAIR:
--dataset bair --n_past 2 --n_future 10 --n_eval 30 --z_dim_app 64 --g_dim_app 128 --z_dim_motion 64 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20 --channels 3
  • for KITTI:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 8
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3
  • for Cityscapes:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 7
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3 --epoch_size 1300

Testing

To evaluate a trained model, the script evaluate.py should be used as follows:

python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH

where $LOG_DIR is a directory where the results will be saved, $DATADIR is the directory containing the test set.

Important note: The directory containing the script should include a directory called lpips_weights which contains v0.1 LPIPS weights (from the official repository of The Unreasonable Effectiveness of Deep Features as a Perceptual Metric).

To run the evaluation on GPU, use the option --device.

Pretrained weight links with Dropbox - For MNIST:
wget https://www.dropbox.com/s/eseisehe2u0epiy/slamp_mnist.pth
  • For KTH:
wget https://www.dropbox.com/s/7m0806nt7xt9bz8/slamp_kth.pth
  • For BAIR:
wget https://www.dropbox.com/s/cl1pzs5trw3ltr0/slamp_bair.pth
  • For KITTI:
wget https://www.dropbox.com/s/p7wdboswakyj7yi/slamp_kitti.pth
  • For Cityscapes:
wget https://www.dropbox.com/s/lzwiivr1irffhsj/slamp_cityscapes.pth

PSNR, SSIM, and LPIPS results reported in the paper were obtained with the following options:

  • for stochastic Moving MNIST:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 5 --n_future 20
  • for KTH:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 30
  • for BAIR:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 2 --n_future 28
  • for KITTI:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20
  • for Cityscapes:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20

To calculate FVD results, you can use calculate_fvd.py script as follows:

python calculate_fvd.py $LOG_DIR $SAMPLE_NAME

where $LOG_DIR is the directory containg the results generated by the evaluate script and $SAMPLE_NAME is the file which contains the samples such as psnr.npz, ssim.npz or lpips.npz. The script will print the FVD value at the end.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@InProceedings{Akan2021ICCV,
    author    = {Akan, Adil Kaan and Erdem, Erkut and Erdem, Aykut and Guney, Fatma},
    title     = {SLAMP: Stochastic Latent Appearance and Motion Prediction},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14728-14737}
}

Acknowledgments

We would like to thank SRVP and SVG authors for making their repositories public. This repository contains several code segments from SRVP's repository and SVG's repository. We appreciate the efforts by Berkay Ugur Senocak for cleaning the code before release.

You might also like...
 Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

 Waymo motion prediction challenge 2021: 3rd place solution
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

Comments
  • Details on KTH and BAIR Validation Sets

    Details on KTH and BAIR Validation Sets

    Hi! Thanks for providing the implementation of SLAMP. In the data processing scripts (data/kth.py and data/bair.py), how do you generate kth_valset_40.npz and bair_valset_30.npz? Is it following the SRVP's code for generating test sets? Could you please provide some details on those sets? Thank you!

    opened by hanghang177 4
  • nsample missing arguments

    nsample missing arguments

    Hi during running your code, i was unexpectedly see an error due to missing arguments

    File "/notebooks/slamp/helpers.py", line 362, in eval_step nsample = opt.nsample

    File args.py doesnt have any definition about nsample, what does nsample mean? I suppose it should be the number of samples per batch in evaluation which means eval batch size Thanks for your reading

    opened by eric-le-12 1
Releases(v1.0)
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023