PyTorch code for JEREX: Joint Entity-Level Relation Extractor

Overview

JEREX: "Joint Entity-Level Relation Extractor"

PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and experiments, see our paper "An End-to-end Model for Entity-level Relation Extraction using Multi-instance Learning": https://arxiv.org/abs/2102.05980 (accepted at EACL 2021).

alt text

Setup

Requirements

  • Required
    • Python 3.7+
    • PyTorch (tested with version 1.8.1 - see here on how to install the correct version)
    • PyTorch Lightning (tested with version 1.2.7)
    • transformers (+sentencepiece, e.g. with 'pip install transformers[sentencepiece]', tested with version 4.5.1)
    • hydra-core (tested with version 1.0.6)
    • scikit-learn (tested with version 0.21.3)
    • tqdm (tested with version 4.43.0)
    • numpy (tested with version 1.18.1)
    • jinja2 (tested with version 2.11.3)

Fetch data

Execute the following steps before running the examples.

(1) Fetch end-to-end (joint) DocRED [1] dataset split. For the original DocRED split, see https://github.com/thunlp/DocRED :

bash ./scripts/fetch_datasets.sh

(2) Fetch model checkpoints (joint multi-instance model (end-to-end split) and relation classification multi-instance model (original split)):

bash ./scripts/fetch_models.sh

Examples

End-to-end (joint) model

(1) Train JEREX (joint model) using the end-to-end split:

python ./jerex_train.py --config-path configs/docred_joint

(2) Evaluate JEREX (joint model) on the end-to-end split (you need to fetch the model first):

python ./jerex_test.py --config-path configs/docred_joint

Relation Extraction (only) model

To run these examples, first download the original DocRED dataset into './data/datasets/docred/' (see 'https://github.com/thunlp/DocRED' for instructions)

(1) Train JEREX (multi-instance relation classification component) using the orignal DocRED dataset.

python ./jerex_train.py --config-path configs/docred

(2) Evaluate JEREX (multi-instance relation classification component) on the original DocRED test set (you need to fetch the model first):

python ./jerex_test.py --config-path configs/docred

Since the original test set labels are hidden, the code will output an F1 score of 0. A 'predictions.json' file is saved, which can be used to retrieve test set metrics by uploading it to the DocRED CodaLab challenge (see https://github.com/thunlp/DocRED)

Reproduction and Evaluation

  • If you want to compare your end-to-end model to JEREX using the strict evaluation setting, have a look at our evaluation script.
  • The DocRED dataset contains some duplicate annotations (especially entity mentions). Duplicates are removed during evaluation (i.e. only counted once).

Configuration / Hyperparameters

  • The hyperparameters used in our paper are set as default. You can adjust hyperparameters and other configuration settings in the 'train.yaml' and 'test.yaml' under ./configs
  • Settings can also be overriden via command line, e.g.:
python ./jerex_train.py training.max_epochs=40
  • A brief explanation of available configuration settings can be found in './configs.py'
  • Besides the main JEREX model ('joint_multi_instance') and the 'global' baseline ('joint_global') you can also train each sub-component ('mention_localization', 'coreference_resolution', 'entity_classification', 'relation_classification_multi_instance', 'relation_classification_global') individually. Just set 'model.model_type' accordingly (e.g. 'model.model_type: joint_global')

Prediction result inspection / Postprocessing

  • When testing a model ('./jerex_test.py') or by either specifying a test dataset (using 'datasets.test_path' configuration) or setting 'final_valid_evaluate' to True (using 'misc.final_valid_evaluate=true' configuration) during training ('./jerex_train.py'), a file containing the model's predictions is stored ('predictions.json').
  • By using a joint model ('joint_multi_instance' / 'joint_global'), a file ('examples.html') containing visualizations of all prediction results is also stored alongside 'predictions.json'.

Training/Inference speed and memory consumption

Performing a search over token spans (and pairs of spans) in the input document (as in JEREX) can be quite (CPU/GPU) memory demanding. If you run into memory issues (i.e. crashing of training/inference), these settings may help:

  • 'training.max_spans'/'training.max_coref_pairs'/'training.max_rel_pairs' (or 'inference.max_spans'/'inference.max_coref_pairs'/'inference.max_rel_pairs'): These settings restrict the number of spans/mention pairs for coreference resolution/mention pairs for MI relation classification that are processed simultaneously. Setting these to a lower number reduces training/inference speed, but lowers memory consumption.
  • The default setting of maximum span size is quite large. If the entity mentions in your dataset are usually shorter than 10 tokens, you can restrict the span search to less tokens (by setting 'sampling.max_span_size')

References

[1] Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin,Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou,and Maosong Sun. 2019.  DocRED: A Large-Scale Document-Level  Relation  Extraction  Dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 764–777, Florence, Italy. ACL.
Owner
LAVIS - NLP Working Group
LAVIS - NLP Working Group
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022