Few-shot Learning of GPT-3

Overview

Few-shot Learning With Language Models

This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper. In particular, a few training examples are placed into a natural language "prompt" and predictions are made by generating from the language model. See the GPT-3 paper and Calibrate Before Use for more information.

You can run this codebase with GPT-3 (if you have a key from OpenAI), GPT-2, and any other language model available in HuggingFace Transformers. If you have a GPT-3 key, you should place your API key into a file named openai_key.txt. The underlying model you use is abstracted away using a common API.

Running this codebase will report results with and without contextual calibration.

Dependencies

This code is written using PyTorch and HuggingFace's Transformer repo. If you are running a model locally (e.g., GPT-2), the code requires a single GPU. Running these experiments is relatively lightweight (there is no training), so a single GPU is sufficient. It is technically possible to run the experiments without a GPU, but the runtime will be slow.

Installation

The easiest way to install the code is to create a fresh anaconda environment:

conda create -n fewshot python=3.6
source activate fewshot
pip install -r requirements.txt

Now you should be ready to go!

Replicating Our Results

Here is how to replicate the results from our paper for GPT-2. To replicate the results for classification tasks:

CUDA_VISIBLE_DEVICES=0 python run_classification.py \
--model="gpt2-xl" \
--dataset="sst2, trec, cb, agnews, dbpedia" \
--num_seeds=5 \
--all_shots="0, 1, 4, 8" \
--subsample_test_set=300 \
--approx

To replicate the results for extraction tasks:

CUDA_VISIBLE_DEVICES=0 python run_extraction.py \
--model="gpt2-xl" \
--dataset="mit_movie_Genre, mit_movie_Director, atis_airline_name, atis_depart_date.day_name" \
--num_seeds=5 \
--all_shots="0, 1, 4, 8" \
--subsample_test_set=300

To replicate the results for LAMA:

CUDA_VISIBLE_DEVICES=0 python run_lama.py

Note that after we refactored our code, the training sets are not the same ones used in our results table. We expect the results to differ slightly but they should match the same trends seen in our results.

Overview of Codebase

Data

The data folder contains the raw data for numerous tasks. If you'd like to add your own task, add the data into that folder. The code for loading a dataset, as well as defining the prompt format for a task, is in utils/data_utils.py. We have loaders for a wide range of existing datasets. If you want to add a new dataset that is similar in structure to any of the existing datasets (e.g., its text classification) adding it should be very simple---you can use an existing dataset as a guide.

Utils

The utils folder contains all of the code for calling the underlying models, getting the probabilities of each label token, possibly applying contextual calibration, and more. If you just want to evaluate few-shot learning on your task, you should not need to modify this code. If you want to extend our code (e.g., modify how decisions are made) this is the place to look.

Run Scripts

The run scripts, e.g., run_classification.py, contain the code for randomly sampling the examples to use in the prompt, calling the models, the necessary evaluation metrics, and more. If you are adding a new task format (one that is not classification, QA) then you will need to write your own run script. Inside the run script, you can set the parameters for the experiments using the command line arguments.

For all experiments, we save and pickle the outputs of the model. This makes doing a post-hoc analysis of the accuracy / plotting results / etc. very fast. You can also use the saved outputs to evaluate how the accuracy would have changed if a different decision making function was used (e.g., accuracy with and without contextual calibration).

References

Please consider citing our work if you found this code or our paper beneficial to your research.

@article{Zhao2021Calibrate,	
  Author = {Tony Z. Zhao and Eric Wallace and Shi Feng and Dan Klein and Sameer Singh},	
  Journal={arXiv preprint arXiv:2102.09690},	
  Year = {2021},	
  Title = {Calibrate Before Use: Improving Few-shot Performance of Language Models}	
}    	

Contributions and Contact

This code was developed by Tony Z. Zhao and Eric Wallace, contact available at [email protected] and [email protected].

If you'd like to contribute code, feel free to open a pull request. If you find an issue, please open an issue.

Owner
Tony Z. Zhao
UC Berkeley EECS, working on robotics, NLP and ML
Tony Z. Zhao
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023